Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import TFBertForSequenceClassification, BertTokenizer
|
| 3 |
+
import tensorflow as tf
|
| 4 |
+
|
| 5 |
+
# Load model and tokenizer from your HF model repo
|
| 6 |
+
model = TFBertForSequenceClassification.from_pretrained("Shrish191/sentiment-classifier")
|
| 7 |
+
tokenizer = BertTokenizer.from_pretrained("Shrish191/sentiment-classifier")
|
| 8 |
+
|
| 9 |
+
def classify_sentiment(text):
|
| 10 |
+
inputs = tokenizer(text, return_tensors="tf", padding=True, truncation=True)
|
| 11 |
+
predictions = model(inputs).logits
|
| 12 |
+
label = tf.argmax(predictions, axis=1).numpy()[0]
|
| 13 |
+
labels = {0: "Negative", 1: "Neutral", 2: "Positive"}
|
| 14 |
+
return labels[label]
|
| 15 |
+
|
| 16 |
+
demo = gr.Interface(fn=classify_sentiment,
|
| 17 |
+
inputs=gr.Textbox(placeholder="Enter a tweet..."),
|
| 18 |
+
outputs="text",
|
| 19 |
+
title="Tweet Sentiment Classifier",
|
| 20 |
+
description="Multilingual BERT-based Sentiment Analysis")
|
| 21 |
+
|
| 22 |
+
demo.launch()
|