Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -21,6 +21,7 @@ demo = gr.Interface(fn=classify_sentiment,
|
|
| 21 |
|
| 22 |
demo.launch()
|
| 23 |
'''
|
|
|
|
| 24 |
import gradio as gr
|
| 25 |
from transformers import TFBertForSequenceClassification, BertTokenizer
|
| 26 |
import tensorflow as tf
|
|
@@ -53,5 +54,87 @@ demo = gr.Interface(
|
|
| 53 |
)
|
| 54 |
|
| 55 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
|
|
|
|
| 21 |
|
| 22 |
demo.launch()
|
| 23 |
'''
|
| 24 |
+
'''
|
| 25 |
import gradio as gr
|
| 26 |
from transformers import TFBertForSequenceClassification, BertTokenizer
|
| 27 |
import tensorflow as tf
|
|
|
|
| 54 |
)
|
| 55 |
|
| 56 |
demo.launch()
|
| 57 |
+
'''
|
| 58 |
+
import gradio as gr
|
| 59 |
+
from transformers import TFBertForSequenceClassification, BertTokenizer
|
| 60 |
+
import tensorflow as tf
|
| 61 |
+
import snscrape.modules.twitter as sntwitter
|
| 62 |
+
import praw
|
| 63 |
+
import os
|
| 64 |
+
|
| 65 |
+
# Load model and tokenizer
|
| 66 |
+
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
|
| 67 |
+
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")
|
| 68 |
+
|
| 69 |
+
# Label Mapping
|
| 70 |
+
LABELS = {
|
| 71 |
+
0: "Neutral",
|
| 72 |
+
1: "Positive",
|
| 73 |
+
2: "Negative"
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
# Reddit API setup with environment variables
|
| 77 |
+
reddit = praw.Reddit(
|
| 78 |
+
client_id=os.getenv("REDDIT_CLIENT_ID"),
|
| 79 |
+
client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
|
| 80 |
+
user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-script")
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
# Tweet text extractor
|
| 84 |
+
def fetch_tweet_text(tweet_url):
|
| 85 |
+
try:
|
| 86 |
+
tweet_id = tweet_url.split("/")[-1]
|
| 87 |
+
for tweet in sntwitter.TwitterTweetScraper(tweet_id).get_items():
|
| 88 |
+
return tweet.content
|
| 89 |
+
return "Unable to extract tweet content."
|
| 90 |
+
except Exception as e:
|
| 91 |
+
return f"Error fetching tweet: {str(e)}"
|
| 92 |
+
|
| 93 |
+
# Reddit post extractor
|
| 94 |
+
def fetch_reddit_text(reddit_url):
|
| 95 |
+
try:
|
| 96 |
+
submission = reddit.submission(url=reddit_url)
|
| 97 |
+
return f"{submission.title}\n\n{submission.selftext}"
|
| 98 |
+
except Exception as e:
|
| 99 |
+
return f"Error fetching Reddit post: {str(e)}"
|
| 100 |
+
|
| 101 |
+
# Sentiment classification logic
|
| 102 |
+
def classify_sentiment(text_input, tweet_url, reddit_url):
|
| 103 |
+
if reddit_url.strip():
|
| 104 |
+
text = fetch_reddit_text(reddit_url)
|
| 105 |
+
elif tweet_url.strip():
|
| 106 |
+
text = fetch_tweet_text(tweet_url)
|
| 107 |
+
elif text_input.strip():
|
| 108 |
+
text = text_input
|
| 109 |
+
else:
|
| 110 |
+
return "[!] Please enter text or a post URL."
|
| 111 |
+
|
| 112 |
+
if text.lower().startswith("error") or "Unable to extract" in text:
|
| 113 |
+
return f"[!] Error: {text}"
|
| 114 |
+
|
| 115 |
+
try:
|
| 116 |
+
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
|
| 117 |
+
outputs = model(inputs)
|
| 118 |
+
probs = tf.nn.softmax(outputs.logits, axis=1)
|
| 119 |
+
pred_label = tf.argmax(probs, axis=1).numpy()[0]
|
| 120 |
+
confidence = float(tf.reduce_max(probs).numpy())
|
| 121 |
+
return f"Prediction: {LABELS[pred_label]} (Confidence: {confidence:.2f})"
|
| 122 |
+
except Exception as e:
|
| 123 |
+
return f"[!] Prediction error: {str(e)}"
|
| 124 |
+
|
| 125 |
+
# Gradio Interface
|
| 126 |
+
demo = gr.Interface(
|
| 127 |
+
fn=classify_sentiment,
|
| 128 |
+
inputs=[
|
| 129 |
+
gr.Textbox(label="Custom Text Input", placeholder="Type your tweet or message here..."),
|
| 130 |
+
gr.Textbox(label="Tweet URL", placeholder="Paste a tweet URL here (optional)"),
|
| 131 |
+
gr.Textbox(label="Reddit Post URL", placeholder="Paste a Reddit post URL here (optional)")
|
| 132 |
+
],
|
| 133 |
+
outputs="text",
|
| 134 |
+
title="Multilingual Sentiment Analysis",
|
| 135 |
+
description="Analyze sentiment of text, tweets, or Reddit posts. Supports multiple languages using BERT!"
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
demo.launch()
|
| 139 |
|
| 140 |
|