Spaces:
Running
Running
File size: 1,791 Bytes
356ec31 e45b97b 492c60e 356ec31 a17bf5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
/**
* Worker script for zero-shot classification.
* Loads the pipeline and handles classification requests.
*/
import { env, pipeline } from '@huggingface/transformers';
// Skip local model check since we are downloading the model from the Hugging Face Hub.
env.allowLocalModels = false;
/**
* Class for zero-shot classification.
* Loads the pipeline and handles classification requests.
*/
class MyZeroShotClassificationPipeline {
// Task and model for zero-shot classification.
static task = 'zero-shot-classification';
static model = 'MoritzLaurer/ModernBERT-large-zeroshot-v2.0';
static instance = null;
// Get the pipeline instance.
static async getInstance(progress_callback = null) {
if (this.instance === null) {
this.instance = pipeline(this.task, this.model, {
dtype: "fp16",
device: "webgpu",
progress_callback,
});
}
return this.instance;
}
}
// Listen for messages from the main thread
self.addEventListener('message', async (event) => {
// Retrieve the pipeline. When called for the first time,
// this will load the pipeline and save it for future use.
const classifier = await MyZeroShotClassificationPipeline.getInstance(x => {
// We also add a progress callback to the pipeline so that we can
// track model loading.
self.postMessage(x);
});
const { text, labels } = event.data;
const split = text.split('\n');
for (const line of split) {
const output = await classifier(line, labels, {
hypothesis_template: 'This text is about {}.',
multi_label: true,
});
// Send the output back to the main thread
self.postMessage({ status: 'output', output });
}
// Send the output back to the main thread
self.postMessage({ status: 'complete' });
}); |