Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
# from dotenv import load_dotenv
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import PIL.Image
|
| 5 |
+
import google.generativeai as genai
|
| 6 |
+
from langchain.prompts import ChatPromptTemplate
|
| 7 |
+
from langchain_community.llms import Ollama
|
| 8 |
+
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
| 9 |
+
import torch
|
| 10 |
+
from accelerate import init_empty_weights
|
| 11 |
+
# Load environment variables
|
| 12 |
+
|
| 13 |
+
# Configure Gemini API
|
| 14 |
+
# genai.configure(api_key=os.getenv("gkey2"))
|
| 15 |
+
|
| 16 |
+
# Define the prompt template
|
| 17 |
+
# prompt = ChatPromptTemplate.from_messages(
|
| 18 |
+
# [
|
| 19 |
+
# ("system", "You are a helpful assistant. Please respond to the user's queries."),
|
| 20 |
+
# ("user", "Question: {question}")
|
| 21 |
+
# ]
|
| 22 |
+
# )
|
| 23 |
+
|
| 24 |
+
prompt="<|image|><|begin_of_text|>You are a helpful assistant. Please respond to the user's queries."
|
| 25 |
+
|
| 26 |
+
# Initialize the Llama model
|
| 27 |
+
# model = Ollama(model="llama3.2")
|
| 28 |
+
model_id = "meta-llama/Llama-3.2-11B-Vision"
|
| 29 |
+
|
| 30 |
+
model = MllamaForConditionalGeneration.from_pretrained(
|
| 31 |
+
model_id,
|
| 32 |
+
torch_dtype=torch.bfloat16,
|
| 33 |
+
device_map="auto",
|
| 34 |
+
)
|
| 35 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 36 |
+
|
| 37 |
+
# Define function to get response from the model
|
| 38 |
+
def get_gemin_response(input_text, img):
|
| 39 |
+
# complete_prompt = prompt.format(question=input_text)
|
| 40 |
+
inputs = processor(images=img, text=prompt, return_tensors="pt").to(model.device)
|
| 41 |
+
response=model.generate(**inputs, max_new_tokens=30)
|
| 42 |
+
|
| 43 |
+
# if input_text != "":
|
| 44 |
+
# # Only generate content from input text if present
|
| 45 |
+
# response = model.generate([input_text])
|
| 46 |
+
# else:
|
| 47 |
+
# response = model.generate([img_text])
|
| 48 |
+
return response
|
| 49 |
+
|
| 50 |
+
# Define the main function for the Streamlit app
|
| 51 |
+
def main():
|
| 52 |
+
st.set_page_config(page_title='Gemini Image & Text')
|
| 53 |
+
st.header('Gemini LLM Application')
|
| 54 |
+
|
| 55 |
+
# Input text
|
| 56 |
+
input_text = st.text_input("Input :", key='input')
|
| 57 |
+
|
| 58 |
+
# Image uploader
|
| 59 |
+
imgupload = st.file_uploader('Choose an image file', type=['jpg', 'jpeg', 'png'])
|
| 60 |
+
|
| 61 |
+
# Display uploaded image and convert to text format (if needed)
|
| 62 |
+
img_text = ""
|
| 63 |
+
if imgupload is not None:
|
| 64 |
+
img = PIL.Image.open(imgupload)
|
| 65 |
+
st.image(img, caption='Uploaded Image', use_column_width=True)
|
| 66 |
+
img_text = "Image uploaded successfully."
|
| 67 |
+
if st.button('Generate Response'):
|
| 68 |
+
# Ensure both inputs are provided
|
| 69 |
+
if img is not None and input_text:
|
| 70 |
+
# Get response from the model
|
| 71 |
+
response = get_gemin_response(input_text, img)
|
| 72 |
+
st.write(processor.decode(response[0]))
|
| 73 |
+
else:
|
| 74 |
+
st.error("Please provide both input text and an image before generating a response.")
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# Run the app
|
| 78 |
+
if __name__ == "__main__":
|
| 79 |
+
main()
|