File size: 6,126 Bytes
a83bace
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Install required packages
!pip install -q datasets transformers accelerate evaluate pillow

# Complete Food-101 Training - Single Cell

# 1. Setup
from google.colab import userdata
import os
import torch
from datasets import load_dataset
from transformers import (
    AutoImageProcessor,
    AutoModelForImageClassification,
    TrainingArguments,
    Trainer
)
import evaluate
import numpy as np

# Setup HF token
hf_token = userdata.get('HF_TOKEN')
os.environ['HF_TOKEN'] = hf_token

# Check GPU
print(f"GPU Available: {torch.cuda.is_available()}")
print(f"GPU Name: {torch.cuda.get_device_name(0)}\n")

# 2. Load Dataset
print("Loading Food-101 dataset...")
dataset = load_dataset("food101")
print(f"Train samples: {len(dataset['train']):,}")
print(f"Test samples: {len(dataset['validation']):,}\n")

# Get class names
class_names = dataset['train'].features['label'].names
print(f"Number of classes: {len(class_names)}\n")

# 3. Setup Preprocessing
model_name = "microsoft/resnet-50"
processor = AutoImageProcessor.from_pretrained(model_name)

def preprocess_dataset(example):
    image = example['image'].convert("RGB")
    inputs = processor(image, return_tensors="pt")
    return {
        'pixel_values': inputs['pixel_values'].squeeze(0),
        'labels': example['label']
    }

# 4. Split and Preprocess Data
print("Splitting dataset...")
train_val = dataset['train'].train_test_split(test_size=0.1, seed=42)

print("Preprocessing train dataset (this takes 5-10 minutes)...")
train_dataset = train_val['train'].map(
    preprocess_dataset,
    remove_columns=['image', 'label'],
    batched=False
)

print("Preprocessing validation dataset...")
val_dataset = train_val['test'].map(
    preprocess_dataset,
    remove_columns=['image', 'label'],
    batched=False
)

print("Preprocessing test dataset...")
test_dataset = dataset['validation'].map(
    preprocess_dataset,
    remove_columns=['image', 'label'],
    batched=False
)

# Set format
train_dataset.set_format(type='torch', columns=['pixel_values', 'labels'])
val_dataset.set_format(type='torch', columns=['pixel_values', 'labels'])
test_dataset.set_format(type='torch', columns=['pixel_values', 'labels'])

print(f"\nTrain: {len(train_dataset):,}")
print(f"Validation: {len(val_dataset):,}")
print(f"Test: {len(test_dataset):,}\n")

# 5. Load Model
print("Loading model...")
id2label = {i: label for i, label in enumerate(class_names)}
label2id = {label: i for i, label in enumerate(class_names)}

model = AutoModelForImageClassification.from_pretrained(
    model_name,
    num_labels=len(class_names),
    id2label=id2label,
    label2id=label2id,
    ignore_mismatched_sizes=True
)

print(f"Model loaded: {model_name}")
print(f"Total parameters: {sum(p.numel() for p in model.parameters()):,}\n")

# 6. Setup Metrics
accuracy_metric = evaluate.load("accuracy")
f1_metric = evaluate.load("f1")

def compute_metrics(eval_pred):
    predictions, labels = eval_pred
    predictions = np.argmax(predictions, axis=1)
    
    accuracy = accuracy_metric.compute(predictions=predictions, references=labels)
    f1 = f1_metric.compute(predictions=predictions, references=labels, average='weighted')
    
    return {
        'accuracy': accuracy['accuracy'],
        'f1': f1['f1']
    }

# 7. Training Arguments
training_args = TrainingArguments(
    output_dir="./food101-resnet50",
    num_train_epochs=5,
    per_device_train_batch_size=64,
    per_device_eval_batch_size=64,
    learning_rate=2e-5,
    weight_decay=0.01,
    warmup_steps=500,
    logging_steps=100,
    eval_strategy="epoch",
    save_strategy="epoch",
    save_total_limit=2,
    load_best_model_at_end=True,
    metric_for_best_model="accuracy",
    greater_is_better=True,
    fp16=True,
    dataloader_num_workers=0,
    push_to_hub=True,
    hub_model_id="suchithnj12/food101-resnet50",
    hub_strategy="end",
    report_to="none"
)

# 8. Create Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=val_dataset,
    compute_metrics=compute_metrics
)

# 9. Train
print("Starting training (this takes 2-3 hours)...")
print("-" * 60)
train_result = trainer.train()

print("\nTraining completed!")
print(f"Final train loss: {train_result.metrics['train_loss']:.4f}")
print(f"Training time: {train_result.metrics['train_runtime']/60:.2f} minutes\n")

# 10. Evaluate on Test Set
print("Evaluating on test set...")
test_results = trainer.evaluate(test_dataset)

print("\nTest Results:")
print(f"Accuracy: {test_results['eval_accuracy']:.4f}")
print(f"F1 Score: {test_results['eval_f1']:.4f}\n")

# 11. Push to Hub
print("Pushing model to HuggingFace Hub...")
trainer.push_to_hub(commit_message="Food-101 ResNet-50 trained model")

print(f"\nModel available at: https://huggingface.co/suchithnj12/food101-resnet50")
print("Training pipeline completed successfully!")



ing builder script: 
 4.20k/? [00:00<00:00, 416kB/s]
Downloading builder script: 
 6.79k/? [00:00<00:00, 645kB/s]
Starting training (this takes 2-3 hours)...
------------------------------------------------------------
 [5330/5330 1:56:41, Epoch 5/5]
Epoch	Training Loss	Validation Loss	Accuracy	F1
1	4.496600	4.458635	0.166337	0.154736
2	3.814000	3.742320	0.298614	0.261986
3	3.257200	3.191649	0.362508	0.330396
4	2.935900	2.900200	0.397096	0.368665
5	2.847600	2.818526	0.408317	0.380199

Training completed!
Final train loss: 3.6109
Training time: 116.77 minutes

Evaluating on test set...
 [395/395 05:23]

Test Results:
Accuracy: 0.4450
F1 Score: 0.4139

Pushing model to HuggingFace Hub...
Processing Files (2 / 2)      : 100%
 95.1MB / 95.1MB, 9.91MB/s  
New Data Upload               : 100%
 95.1MB / 95.1MB, 9.91MB/s  
  ...esnet50/model.safetensors: 100%
 95.1MB / 95.1MB            
  ...esnet50/training_args.bin: 100%
 5.84kB / 5.84kB            

Model available at: https://huggingface.co/suchithnj12/food101-resnet50
Training pipeline completed successfully!