Spaces:
Sleeping
Sleeping
Suchith-nj
commited on
Commit
·
b3a9019
1
Parent(s):
5a36ba5
demo code
Browse files- .gitignore +1 -0
- pages/1_Image_Classifier.py +23 -100
.gitignore
CHANGED
|
@@ -9,3 +9,4 @@ venv/*
|
|
| 9 |
*venv/*
|
| 10 |
=0.19.0
|
| 11 |
.streamlit/secrets.toml
|
|
|
|
|
|
| 9 |
*venv/*
|
| 10 |
=0.19.0
|
| 11 |
.streamlit/secrets.toml
|
| 12 |
+
week1_image_classifier/myLearnings.md
|
pages/1_Image_Classifier.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from PIL import Image
|
| 3 |
import requests
|
| 4 |
-
import io
|
| 5 |
|
| 6 |
st.set_page_config(
|
| 7 |
page_title="Food Classifier",
|
|
@@ -10,122 +9,46 @@ st.set_page_config(
|
|
| 10 |
)
|
| 11 |
|
| 12 |
st.title("Food Classification")
|
| 13 |
-
st.markdown("
|
| 14 |
|
| 15 |
-
|
| 16 |
-
API_URL = "https://api-inference.huggingface.co/models/Kaludi/food-category-classification-v2.0"
|
| 17 |
|
| 18 |
-
def
|
| 19 |
-
"""Query the food classification model"""
|
| 20 |
try:
|
| 21 |
response = requests.post(API_URL, data=image_bytes, timeout=30)
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
return {"error": f"Status {response.status_code}"}
|
| 26 |
-
except Exception as e:
|
| 27 |
-
return {"error": str(e)}
|
| 28 |
|
| 29 |
-
|
| 30 |
-
with st.expander("ℹ️ About This Service"):
|
| 31 |
-
st.markdown("""
|
| 32 |
-
**Technology**: Deep Learning Image Classification
|
| 33 |
-
**Model**: Fine-tuned Vision Transformer
|
| 34 |
-
**Capabilities**: Recognizes various food categories
|
| 35 |
-
**Use Case**: Automated food recognition for nutrition tracking, restaurant apps
|
| 36 |
-
|
| 37 |
-
---
|
| 38 |
-
|
| 39 |
-
**Week 1 Project**: Built complete ML training pipeline
|
| 40 |
-
- Trained custom ResNet-50 on Food-101 dataset (75K images, 101 classes)
|
| 41 |
-
- Implemented end-to-end training pipeline in Google Colab
|
| 42 |
-
- Deployed model to HuggingFace Hub
|
| 43 |
-
- Learned about model training, evaluation, and deployment
|
| 44 |
-
|
| 45 |
-
*Note: Demo uses production model while custom model completes extended training*
|
| 46 |
-
""")
|
| 47 |
-
|
| 48 |
-
# Main interface
|
| 49 |
-
col1, col2 = st.columns([1, 1])
|
| 50 |
|
| 51 |
with col1:
|
| 52 |
-
st.
|
| 53 |
-
st.
|
| 54 |
-
|
| 55 |
-
uploaded_file = st.file_uploader(
|
| 56 |
-
"Choose an image",
|
| 57 |
-
type=['jpg', 'jpeg', 'png'],
|
| 58 |
-
help="Supported formats: JPG, JPEG, PNG"
|
| 59 |
-
)
|
| 60 |
|
| 61 |
if uploaded_file:
|
| 62 |
image = Image.open(uploaded_file)
|
| 63 |
-
st.image(image,
|
| 64 |
|
| 65 |
with col2:
|
| 66 |
-
st.
|
| 67 |
|
| 68 |
if uploaded_file:
|
| 69 |
-
with st.spinner("Analyzing
|
| 70 |
-
|
| 71 |
-
img_bytes = uploaded_file.getvalue()
|
| 72 |
-
|
| 73 |
-
# Query model
|
| 74 |
-
results = query_model(img_bytes)
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
st.rerun()
|
| 81 |
-
|
| 82 |
-
# Display results
|
| 83 |
-
elif isinstance(results, list) and len(results) > 0:
|
| 84 |
-
# Top prediction
|
| 85 |
-
top = results[0]
|
| 86 |
-
top_label = top['label']
|
| 87 |
-
top_score = top['score']
|
| 88 |
-
|
| 89 |
-
st.success("✅ Classification Complete")
|
| 90 |
-
st.markdown(f"## {top_label}")
|
| 91 |
-
st.progress(top_score)
|
| 92 |
-
st.metric("Confidence", f"{top_score*100:.1f}%")
|
| 93 |
-
|
| 94 |
-
# Show top 5
|
| 95 |
-
if len(results) > 1:
|
| 96 |
-
st.markdown("---")
|
| 97 |
-
st.markdown("#### Other Predictions")
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
st.markdown(f"**{i}. {label}**")
|
| 103 |
-
st.progress(score)
|
| 104 |
-
st.caption(f"{score*100:.1f}%")
|
| 105 |
else:
|
| 106 |
-
st.
|
| 107 |
else:
|
| 108 |
-
st.info("
|
| 109 |
|
| 110 |
st.markdown("---")
|
| 111 |
-
st.
|
| 112 |
-
|
| 113 |
-
tip_col1, tip_col2 = st.columns(2)
|
| 114 |
-
|
| 115 |
-
with tip_col1:
|
| 116 |
-
st.markdown("""
|
| 117 |
-
**Image Quality**
|
| 118 |
-
- Use clear, well-lit photos
|
| 119 |
-
- Ensure food is the main subject
|
| 120 |
-
- Avoid heavily filtered images
|
| 121 |
-
""")
|
| 122 |
-
|
| 123 |
-
with tip_col2:
|
| 124 |
-
st.markdown("""
|
| 125 |
-
**Performance**
|
| 126 |
-
- First prediction: ~20 seconds (model loading)
|
| 127 |
-
- Subsequent predictions: 1-2 seconds
|
| 128 |
-
- Model auto-sleeps after 15 min idle
|
| 129 |
-
""")
|
| 130 |
-
|
| 131 |
-
st.caption("Week 1 Complete | Built by Suchith Natraj Javali | View code on GitHub")
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from PIL import Image
|
| 3 |
import requests
|
|
|
|
| 4 |
|
| 5 |
st.set_page_config(
|
| 6 |
page_title="Food Classifier",
|
|
|
|
| 9 |
)
|
| 10 |
|
| 11 |
st.title("Food Classification")
|
| 12 |
+
st.markdown("AI-powered food recognition")
|
| 13 |
|
| 14 |
+
API_URL = "https://api-inference.huggingface.co/models/nateraw/vit-base-beans"
|
|
|
|
| 15 |
|
| 16 |
+
def classify_image(image_bytes):
|
|
|
|
| 17 |
try:
|
| 18 |
response = requests.post(API_URL, data=image_bytes, timeout=30)
|
| 19 |
+
return response.json()
|
| 20 |
+
except:
|
| 21 |
+
return None
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
col1, col2 = st.columns(2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
with col1:
|
| 26 |
+
st.subheader("Upload Image")
|
| 27 |
+
uploaded_file = st.file_uploader("Choose a food image", type=['jpg', 'jpeg', 'png'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
if uploaded_file:
|
| 30 |
image = Image.open(uploaded_file)
|
| 31 |
+
st.image(image, use_column_width=True)
|
| 32 |
|
| 33 |
with col2:
|
| 34 |
+
st.subheader("Results")
|
| 35 |
|
| 36 |
if uploaded_file:
|
| 37 |
+
with st.spinner("Analyzing..."):
|
| 38 |
+
results = classify_image(uploaded_file.getvalue())
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
if results and isinstance(results, list):
|
| 41 |
+
for i, result in enumerate(results[:5], 1):
|
| 42 |
+
label = result.get('label', 'Unknown')
|
| 43 |
+
score = result.get('score', 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
st.write(f"**{i}. {label}**")
|
| 46 |
+
st.progress(score)
|
| 47 |
+
st.caption(f"{score*100:.1f}%")
|
|
|
|
|
|
|
|
|
|
| 48 |
else:
|
| 49 |
+
st.info("Model loading. Wait 20 seconds and retry.")
|
| 50 |
else:
|
| 51 |
+
st.info("Upload an image to classify")
|
| 52 |
|
| 53 |
st.markdown("---")
|
| 54 |
+
st.caption("Week 1 Project - Image Classification Pipeline")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|