import streamlit as st st.set_page_config( page_title="Sentiment Analysis", page_icon="💬", layout="wide" ) st.title("Sentiment Analysis Service") st.markdown("### Status: Coming Week 2") st.info("This service will be available after Week 2 development") col1, col2 = st.columns([2, 1]) with col1: st.markdown(""" ## What This Service Will Do Analyze sentiment of text using fine-tuned BERT model. **Capabilities:** - Positive, Negative, Neutral classification - Confidence scores - Batch processing support - Multi-language support ## Technical Implementation **Model**: DistilBERT (Fine-tuned) - Base: distilbert-base-uncased - Fine-tuned on IMDB dataset - 6 transformer layers **Features**: - Real-time inference - API endpoints - Batch processing - Caching for speed """) with col2: st.markdown("### Demo UI Preview") text_input = st.text_area( "Enter text to analyze", placeholder="Type or paste text here...", disabled=True, height=150 ) if st.button("Analyze Sentiment", disabled=True): st.warning("Service will be available in Week 2") st.markdown("---") st.info("Results will appear here") st.markdown("---") st.caption("Coming in Week 2")