Spaces:
Sleeping
Sleeping
| ### `app.py` | |
| ```python | |
| import os | |
| import fitz # PyMuPDF for PDF processing | |
| import faiss | |
| import numpy as np | |
| import streamlit as st | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from sentence_transformers import SentenceTransformer | |
| from groq import Groq | |
| from dotenv import load_dotenv | |
| # Load API key | |
| load_dotenv() | |
| GROQ_API_KEY = os.getenv("GROQ_API_KEY") | |
| # Initialize Groq client | |
| client = Groq(api_key=GROQ_API_KEY) | |
| # Load sentence transformer model for embedding | |
| embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
| def extract_text_from_pdf(pdf_path): | |
| """Extract text from a PDF file using PyMuPDF.""" | |
| doc = fitz.open(pdf_path) | |
| text = "" | |
| for page in doc: | |
| text += page.get_text("text") + "\n" | |
| return text.strip() | |
| def create_text_chunks(text, chunk_size=500, chunk_overlap=100): | |
| """Split text into chunks of specified size with overlap.""" | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| chunk_size=chunk_size, | |
| chunk_overlap=chunk_overlap | |
| ) | |
| chunks = text_splitter.split_text(text) | |
| return chunks | |
| def create_faiss_index(chunks): | |
| """Generate embeddings for text chunks and store them in FAISS.""" | |
| embeddings = embedding_model.encode(chunks, convert_to_numpy=True) | |
| dimension = embeddings.shape[1] | |
| index = faiss.IndexFlatL2(dimension) # L2 (Euclidean) distance | |
| index.add(embeddings) # Add embeddings to FAISS index | |
| return index, embeddings, chunks | |
| def retrieve_similar_chunks(query, index, embeddings, chunks, top_k=3): | |
| """Retrieve the most relevant text chunks using FAISS.""" | |
| query_embedding = embedding_model.encode([query], convert_to_numpy=True) | |
| distances, indices = index.search(query_embedding, top_k) | |
| results = [chunks[idx] for idx in indices[0]] | |
| return results | |
| def query_groq_api(query, context): | |
| """Send the query along with retrieved context to Groq API.""" | |
| prompt = f"Use the following context to answer the question:\n\n{context}\n\nQuestion: {query}\nAnswer:" | |
| chat_completion = client.chat.completions.create( | |
| messages=[{"role": "user", "content": prompt}], | |
| model="llama-3.3-70b-versatile", | |
| ) | |
| return chat_completion.choices[0].message.content | |
| # Streamlit UI | |
| st.title("π RAG-based PDF Query Application") | |
| st.write("Upload a PDF and ask questions!") | |
| # File Upload | |
| uploaded_file = st.file_uploader("Upload PDF", type="pdf") | |
| if uploaded_file is not None: | |
| pdf_path = "uploaded_document.pdf" | |
| # Save file temporarily | |
| with open(pdf_path, "wb") as f: | |
| f.write(uploaded_file.getbuffer()) | |
| # Process the PDF | |
| st.write("Processing PDF...") | |
| text = extract_text_from_pdf(pdf_path) | |
| chunks = create_text_chunks(text) | |
| index, embeddings, chunk_texts = create_faiss_index(chunks) | |
| st.success("PDF processed! Now you can ask questions.") | |
| # User Query | |
| query = st.text_input("Ask a question about the PDF:") | |
| if st.button("Get Answer"): | |
| if query: | |
| # Retrieve top chunks | |
| relevant_chunks = retrieve_similar_chunks(query, index, embeddings, chunk_texts) | |
| context = "\n\n".join(relevant_chunks) | |
| # Query Groq API | |
| response = query_groq_api(query, context) | |
| st.subheader("Answer:") | |
| st.write(response) | |
| else: | |
| st.warning("Please enter a question.") |