Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,11 +4,11 @@ import fitz # PyMuPDF
|
|
| 4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 6 |
from langchain_community.vectorstores import FAISS
|
| 7 |
-
from langchain_community.llms import HuggingFaceHub
|
| 8 |
from langchain.chains import RetrievalQA
|
| 9 |
-
import
|
|
|
|
| 10 |
import os
|
| 11 |
-
import
|
| 12 |
|
| 13 |
# Page configuration
|
| 14 |
st.set_page_config(
|
|
@@ -72,29 +72,52 @@ st.markdown("""
|
|
| 72 |
from { opacity: 0; }
|
| 73 |
to { opacity: 1; }
|
| 74 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
</style>
|
| 76 |
""", unsafe_allow_html=True)
|
| 77 |
|
| 78 |
# Initialize session state
|
| 79 |
if 'pdf_processed' not in st.session_state:
|
| 80 |
st.session_state.pdf_processed = False
|
| 81 |
-
if '
|
| 82 |
-
st.session_state.
|
| 83 |
if 'pages' not in st.session_state:
|
| 84 |
st.session_state.pages = []
|
|
|
|
|
|
|
| 85 |
|
| 86 |
-
# Load
|
| 87 |
@st.cache_resource
|
| 88 |
def load_embedding_model():
|
| 89 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
def process_pdf(pdf_file):
|
| 100 |
"""Extract text from PDF and create vector store"""
|
|
@@ -103,8 +126,9 @@ def process_pdf(pdf_file):
|
|
| 103 |
text = ""
|
| 104 |
st.session_state.pages = []
|
| 105 |
for page in doc:
|
| 106 |
-
|
| 107 |
-
|
|
|
|
| 108 |
|
| 109 |
with st.spinner("π Processing text..."):
|
| 110 |
text_splitter = RecursiveCharacterTextSplitter(
|
|
@@ -115,19 +139,44 @@ def process_pdf(pdf_file):
|
|
| 115 |
chunks = text_splitter.split_text(text)
|
| 116 |
|
| 117 |
embeddings = load_embedding_model()
|
| 118 |
-
vector_store = FAISS.from_texts(chunks, embeddings)
|
| 119 |
-
|
| 120 |
-
qa_model = load_qa_model()
|
| 121 |
-
st.session_state.qa_chain = RetrievalQA.from_chain_type(
|
| 122 |
-
llm=qa_model,
|
| 123 |
-
chain_type="stuff",
|
| 124 |
-
retriever=vector_store.as_retriever(search_kwargs={"k": 3}),
|
| 125 |
-
return_source_documents=True
|
| 126 |
-
)
|
| 127 |
|
| 128 |
st.session_state.pdf_processed = True
|
| 129 |
st.success("β
PDF processed successfully!")
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
def generate_qa_for_chapter(start_page, end_page):
|
| 132 |
"""Generate Q&A for specific chapter pages"""
|
| 133 |
if start_page < 1 or end_page > len(st.session_state.pages) or start_page > end_page:
|
|
@@ -144,17 +193,19 @@ def generate_qa_for_chapter(start_page, end_page):
|
|
| 144 |
chunks = text_splitter.split_text(chapter_text)
|
| 145 |
|
| 146 |
qa_pairs = []
|
| 147 |
-
qa_model = load_qa_model()
|
| 148 |
|
| 149 |
with st.spinner(f"π§ Generating Q&A for pages {start_page}-{end_page}..."):
|
| 150 |
for i, chunk in enumerate(chunks):
|
| 151 |
if i % 2 == 0: # Generate question
|
| 152 |
-
prompt = f"
|
| 153 |
-
question =
|
|
|
|
|
|
|
| 154 |
else: # Generate answer
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
|
|
|
| 158 |
|
| 159 |
return qa_pairs
|
| 160 |
|
|
@@ -175,8 +226,8 @@ if pdf_file:
|
|
| 175 |
# Navigation tabs
|
| 176 |
selected_tab = option_menu(
|
| 177 |
None,
|
| 178 |
-
["Ask Questions", "Generate Chapter Q&A"],
|
| 179 |
-
icons=["chat", "book"],
|
| 180 |
menu_icon="cast",
|
| 181 |
default_index=0,
|
| 182 |
orientation="horizontal",
|
|
@@ -194,11 +245,11 @@ if pdf_file:
|
|
| 194 |
|
| 195 |
if user_question:
|
| 196 |
with st.spinner("π€ Thinking..."):
|
| 197 |
-
|
| 198 |
-
st.markdown(f"<div class='card'><b>Answer:</b> {
|
| 199 |
|
| 200 |
with st.expander("π See source passages"):
|
| 201 |
-
for i, doc in enumerate(
|
| 202 |
st.markdown(f"**Passage {i+1}:** {doc.page_content[:500]}...")
|
| 203 |
|
| 204 |
# Chapter Q&A Generation Tab
|
|
@@ -224,11 +275,24 @@ if pdf_file:
|
|
| 224 |
""", unsafe_allow_html=True)
|
| 225 |
else:
|
| 226 |
st.warning("No Q&A pairs generated. Try a different page range.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
# Footer
|
| 229 |
st.markdown("---")
|
| 230 |
st.markdown("""
|
| 231 |
<div style="text-align: center; padding: 20px;">
|
| 232 |
-
Built with β€οΈ for students | PDF Study Assistant
|
| 233 |
</div>
|
| 234 |
""", unsafe_allow_html=True)
|
|
|
|
| 4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 6 |
from langchain_community.vectorstores import FAISS
|
|
|
|
| 7 |
from langchain.chains import RetrievalQA
|
| 8 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
| 9 |
+
import requests
|
| 10 |
import os
|
| 11 |
+
import json
|
| 12 |
|
| 13 |
# Page configuration
|
| 14 |
st.set_page_config(
|
|
|
|
| 72 |
from { opacity: 0; }
|
| 73 |
to { opacity: 1; }
|
| 74 |
}
|
| 75 |
+
|
| 76 |
+
.spinner {
|
| 77 |
+
display: flex;
|
| 78 |
+
justify-content: center;
|
| 79 |
+
align-items: center;
|
| 80 |
+
height: 100px;
|
| 81 |
+
}
|
| 82 |
</style>
|
| 83 |
""", unsafe_allow_html=True)
|
| 84 |
|
| 85 |
# Initialize session state
|
| 86 |
if 'pdf_processed' not in st.session_state:
|
| 87 |
st.session_state.pdf_processed = False
|
| 88 |
+
if 'vector_store' not in st.session_state:
|
| 89 |
+
st.session_state.vector_store = None
|
| 90 |
if 'pages' not in st.session_state:
|
| 91 |
st.session_state.pages = []
|
| 92 |
+
if 'history' not in st.session_state:
|
| 93 |
+
st.session_state.history = []
|
| 94 |
|
| 95 |
+
# Load embedding model with caching
|
| 96 |
@st.cache_resource
|
| 97 |
def load_embedding_model():
|
| 98 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 99 |
|
| 100 |
+
def query_hf_inference_api(prompt, model="google/flan-t5-xxl", max_tokens=200):
|
| 101 |
+
"""Query Hugging Face Inference API directly"""
|
| 102 |
+
API_URL = f"https://api-inference.huggingface.co/models/{model}"
|
| 103 |
+
headers = {"Authorization": f"Bearer {os.getenv('HF_API_KEY')}"}
|
| 104 |
+
payload = {
|
| 105 |
+
"inputs": prompt,
|
| 106 |
+
"parameters": {
|
| 107 |
+
"max_new_tokens": max_tokens,
|
| 108 |
+
"temperature": 0.5,
|
| 109 |
+
"do_sample": False
|
| 110 |
+
}
|
| 111 |
+
}
|
| 112 |
+
|
| 113 |
+
try:
|
| 114 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
| 115 |
+
response.raise_for_status()
|
| 116 |
+
result = response.json()
|
| 117 |
+
return result[0]['generated_text'] if result else ""
|
| 118 |
+
except Exception as e:
|
| 119 |
+
st.error(f"Error querying model: {str(e)}")
|
| 120 |
+
return ""
|
| 121 |
|
| 122 |
def process_pdf(pdf_file):
|
| 123 |
"""Extract text from PDF and create vector store"""
|
|
|
|
| 126 |
text = ""
|
| 127 |
st.session_state.pages = []
|
| 128 |
for page in doc:
|
| 129 |
+
page_text = page.get_text()
|
| 130 |
+
text += page_text
|
| 131 |
+
st.session_state.pages.append(page_text)
|
| 132 |
|
| 133 |
with st.spinner("π Processing text..."):
|
| 134 |
text_splitter = RecursiveCharacterTextSplitter(
|
|
|
|
| 139 |
chunks = text_splitter.split_text(text)
|
| 140 |
|
| 141 |
embeddings = load_embedding_model()
|
| 142 |
+
st.session_state.vector_store = FAISS.from_texts(chunks, embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
st.session_state.pdf_processed = True
|
| 145 |
st.success("β
PDF processed successfully!")
|
| 146 |
|
| 147 |
+
def ask_question(question):
|
| 148 |
+
"""Answer a question using the vector store and Hugging Face API"""
|
| 149 |
+
if not st.session_state.vector_store:
|
| 150 |
+
return "PDF not processed yet", []
|
| 151 |
+
|
| 152 |
+
# Find relevant passages
|
| 153 |
+
docs = st.session_state.vector_store.similarity_search(question, k=3)
|
| 154 |
+
context = "\n\n".join([doc.page_content for doc in docs])
|
| 155 |
+
|
| 156 |
+
# Format prompt for the model
|
| 157 |
+
prompt = f"""
|
| 158 |
+
Based on the following context, answer the question.
|
| 159 |
+
If the answer isn't in the context, say "I don't know".
|
| 160 |
+
|
| 161 |
+
Context:
|
| 162 |
+
{context}
|
| 163 |
+
|
| 164 |
+
Question: {question}
|
| 165 |
+
Answer:
|
| 166 |
+
"""
|
| 167 |
+
|
| 168 |
+
# Query the model
|
| 169 |
+
answer = query_hf_inference_api(prompt)
|
| 170 |
+
|
| 171 |
+
# Add to history
|
| 172 |
+
st.session_state.history.append({
|
| 173 |
+
"question": question,
|
| 174 |
+
"answer": answer,
|
| 175 |
+
"sources": [doc.page_content for doc in docs]
|
| 176 |
+
})
|
| 177 |
+
|
| 178 |
+
return answer, docs
|
| 179 |
+
|
| 180 |
def generate_qa_for_chapter(start_page, end_page):
|
| 181 |
"""Generate Q&A for specific chapter pages"""
|
| 182 |
if start_page < 1 or end_page > len(st.session_state.pages) or start_page > end_page:
|
|
|
|
| 193 |
chunks = text_splitter.split_text(chapter_text)
|
| 194 |
|
| 195 |
qa_pairs = []
|
|
|
|
| 196 |
|
| 197 |
with st.spinner(f"π§ Generating Q&A for pages {start_page}-{end_page}..."):
|
| 198 |
for i, chunk in enumerate(chunks):
|
| 199 |
if i % 2 == 0: # Generate question
|
| 200 |
+
prompt = f"Based on this text, generate one study question: {chunk[:500]}"
|
| 201 |
+
question = query_hf_inference_api(prompt, max_tokens=100)
|
| 202 |
+
if question and not question.endswith("?"):
|
| 203 |
+
question += "?"
|
| 204 |
else: # Generate answer
|
| 205 |
+
if qa_pairs: # Ensure we have a question to answer
|
| 206 |
+
prompt = f"Answer this question: {qa_pairs[-1][0]} using this context: {chunk[:500]}"
|
| 207 |
+
answer = query_hf_inference_api(prompt, max_tokens=200)
|
| 208 |
+
qa_pairs[-1] = (qa_pairs[-1][0], answer)
|
| 209 |
|
| 210 |
return qa_pairs
|
| 211 |
|
|
|
|
| 226 |
# Navigation tabs
|
| 227 |
selected_tab = option_menu(
|
| 228 |
None,
|
| 229 |
+
["Ask Questions", "Generate Chapter Q&A", "History"],
|
| 230 |
+
icons=["chat", "book", "clock-history"],
|
| 231 |
menu_icon="cast",
|
| 232 |
default_index=0,
|
| 233 |
orientation="horizontal",
|
|
|
|
| 245 |
|
| 246 |
if user_question:
|
| 247 |
with st.spinner("π€ Thinking..."):
|
| 248 |
+
answer, docs = ask_question(user_question)
|
| 249 |
+
st.markdown(f"<div class='card'><b>Answer:</b> {answer}</div>", unsafe_allow_html=True)
|
| 250 |
|
| 251 |
with st.expander("π See source passages"):
|
| 252 |
+
for i, doc in enumerate(docs):
|
| 253 |
st.markdown(f"**Passage {i+1}:** {doc.page_content[:500]}...")
|
| 254 |
|
| 255 |
# Chapter Q&A Generation Tab
|
|
|
|
| 275 |
""", unsafe_allow_html=True)
|
| 276 |
else:
|
| 277 |
st.warning("No Q&A pairs generated. Try a different page range.")
|
| 278 |
+
|
| 279 |
+
# History Tab
|
| 280 |
+
elif selected_tab == "History":
|
| 281 |
+
st.markdown("### β³ Question History")
|
| 282 |
+
if not st.session_state.history:
|
| 283 |
+
st.info("No questions asked yet.")
|
| 284 |
+
else:
|
| 285 |
+
for i, item in enumerate(reversed(st.session_state.history)):
|
| 286 |
+
with st.expander(f"Q{i+1}: {item['question']}"):
|
| 287 |
+
st.markdown(f"**Answer:** {item['answer']}")
|
| 288 |
+
st.markdown("**Source Passages:**")
|
| 289 |
+
for j, source in enumerate(item['sources']):
|
| 290 |
+
st.markdown(f"{j+1}. {source[:500]}...")
|
| 291 |
|
| 292 |
# Footer
|
| 293 |
st.markdown("---")
|
| 294 |
st.markdown("""
|
| 295 |
<div style="text-align: center; padding: 20px;">
|
| 296 |
+
Built with β€οΈ for students | PDF Study Assistant v2.0
|
| 297 |
</div>
|
| 298 |
""", unsafe_allow_html=True)
|