File size: 39,298 Bytes
5de2f8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.init import ones_, trunc_normal_, zeros_

from openrec.modeling.common import DropPath, Identity, Mlp
from openrec.modeling.decoders.nrtr_decoder import Embeddings


class CrossAttention(nn.Module):

    def __init__(
        self,
        dim,
        num_heads=8,
        qkv_bias=False,
        qk_scale=None,
        attn_drop=0.0,
        proj_drop=0.0,
    ):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim**-0.5

        self.q = nn.Linear(dim, dim, bias=qkv_bias)
        self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, q, kv, key_mask=None):
        N, C = kv.shape[1:]
        QN = q.shape[1]
        q = self.q(q).reshape([-1, QN, self.num_heads,
                               C // self.num_heads]).transpose(1, 2)
        q = q * self.scale
        k, v = self.kv(kv).reshape(
            [-1, N, 2, self.num_heads,
             C // self.num_heads]).permute(2, 0, 3, 1, 4)

        attn = q.matmul(k.transpose(2, 3))

        if key_mask is not None:
            attn = attn + key_mask.unsqueeze(1)

        attn = F.softmax(attn, -1)
        if not self.training:
            self.attn_map = attn
        attn = self.attn_drop(attn)

        x = (attn.matmul(v)).transpose(1, 2).reshape((-1, QN, C))
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class EdgeDecoderLayer(nn.Module):

    def __init__(
        self,
        dim,
        num_heads,
        mlp_ratio=4.0,
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=[0.0, 0.0],
        act_layer=nn.GELU,
        norm_layer='nn.LayerNorm',
        epsilon=1e-6,
    ):
        super().__init__()

        self.head_dim = dim // num_heads
        self.scale = qk_scale or self.head_dim**-0.5

        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path1 = DropPath(
            drop_path[0]) if drop_path[0] > 0.0 else Identity()
        self.norm1 = eval(norm_layer)(dim, eps=epsilon)
        self.norm2 = eval(norm_layer)(dim, eps=epsilon)

        # self.c = nn.Linear(dim, dim*2)
        self.p = nn.Linear(dim, dim)
        self.cv = nn.Linear(dim, dim)
        self.pv = nn.Linear(dim, dim)

        self.dim = dim
        self.num_heads = num_heads
        self.p_proj = nn.Linear(dim, dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp_ratio = mlp_ratio
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=drop,
        )

    def forward(self, p, cv, pv):
        pN = p.shape[1]
        vN = cv.shape[1]
        p_shortcut = p

        p1 = self.p(p).reshape(
            [-1, pN, self.num_heads,
             self.dim // self.num_heads]).transpose(1, 2)
        cv1 = self.cv(cv).reshape(
            [-1, vN, self.num_heads,
             self.dim // self.num_heads]).transpose(1, 2)
        pv1 = self.pv(pv).reshape(
            [-1, vN, self.num_heads,
             self.dim // self.num_heads]).transpose(1, 2)

        edge = F.softmax(p1.matmul(pv1.transpose(2, 3)), -1)  # B h N N

        p_c = (edge @ cv1).transpose(1, 2).reshape((-1, pN, self.dim))

        x1 = self.norm1(p_shortcut + self.drop_path1(self.p_proj(p_c)))

        x = self.norm2(x1 + self.drop_path1(self.mlp(x1)))
        return x


class DecoderLayer(nn.Module):

    def __init__(
        self,
        dim,
        num_heads,
        mlp_ratio=4.0,
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        act_layer=nn.GELU,
        norm_layer='nn.LayerNorm',
        epsilon=1e-6,
    ):
        super().__init__()
        self.norm1 = eval(norm_layer)(dim, eps=epsilon)
        self.normkv = eval(norm_layer)(dim, eps=epsilon)

        self.mixer = CrossAttention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop,
        )

        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity()

        self.norm2 = eval(norm_layer)(dim, eps=epsilon)

        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp_ratio = mlp_ratio
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=drop,
        )

    def forward(self, q, kv, key_mask=None):
        x1 = q + self.drop_path(
            self.mixer(self.norm1(q), self.normkv(kv), key_mask))
        x = x1 + self.drop_path(self.mlp(self.norm2(x1)))
        return x


class CMFFLayer(nn.Module):

    def __init__(
        self,
        dim,
        num_heads,
        mlp_ratio=4.0,
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        act_layer=nn.GELU,
        epsilon=1e-6,
    ):
        super().__init__()
        self.normq1 = nn.LayerNorm(dim, eps=epsilon)
        self.normkv1 = nn.LayerNorm(dim, eps=epsilon)
        self.images_to_question_cross_attn = CrossAttention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop,
        )
        self.normq2 = nn.LayerNorm(dim, eps=epsilon)
        self.normkv2 = nn.LayerNorm(dim, eps=epsilon)
        self.question_to_images_cross_attn = CrossAttention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop,
        )
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity()
        self.normmlp = nn.LayerNorm(dim, eps=epsilon)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=drop,
        )

    def forward(self, question_f, prompt_f, visual_f, mask=None):

        query_add = torch.concat([question_f, prompt_f, visual_f], 1)

        query_add = query_add + self.drop_path(
            self.images_to_question_cross_attn(self.normq1(query_add),
                                               self.normkv1(prompt_f), mask))
        query_add = query_add + self.drop_path(
            self.question_to_images_cross_attn(
                self.normq2(query_add),
                self.normkv2(query_add[:, -visual_f.shape[1]:, :])))
        query_updated = query_add + self.drop_path(
            self.mlp(self.normmlp(query_add)))

        question_f_updated = query_updated[:, :question_f.shape[1], :]
        prompt_f_updated = query_updated[:, question_f.
                                         shape[1]:-visual_f.shape[1], :]
        visual_f_updated = query_updated[:, -visual_f.shape[1]:, :]

        return question_f_updated, prompt_f_updated, visual_f_updated


class IGTRDecoder(nn.Module):
    """
    IGTRDecoder is a neural network module designed for decoding tasks in OCR (Optical Character Recognition) systems.
    It utilizes a combination of embedding layers, multi-head attention layers, and linear layers to process input sequences
    and generate output sequences.

    Args:
        in_channels (int): Number of input channels.
        dim (int): Dimension of the model.
        out_channels (int): Number of output channels.
        num_layer (int, optional): Number of layers in the decoder. Default is 2.
        drop_path_rate (float, optional): Drop path rate for stochastic depth. Default is 0.1.
        max_len (int, optional): Maximum length of the sequence. Default is 25.
        vis_seq (int, optional): Length of the visual sequence. Default is 50.
        ch (bool, optional): Flag for character embedding. Default is False.
        ar (bool, optional): Flag for autoregressive decoding. Default is False.
        refine_iter (int, optional): Number of refinement iterations. Default is 0.
        quesall (bool, optional): Flag to use all questions. Default is True.
        next_pred (bool, optional): Flag for next prediction. Default is False.
        ds (bool, optional): Flag for downsampling. Default is False.
        pos2d (bool, optional): Flag for 2D positional embedding. Default is False.
        check_search (bool, optional): Flag for checking search. Default is False.
        max_size (list, optional): Maximum size for 2D positional embedding. Default is [8, 32].
        **kwargs: Additional keyword arguments.

    Methods:
        _init_weights(m): Initializes the weights of the module.
        no_weight_decay(): Returns the parameters that should not have weight decay.
        question_encoder(targets, train_i): Encodes the questions based on the targets and training index.
        forward(x, data=None): Forward pass of the decoder. Calls either forward_train or forward_test based on the mode.
        forward_test(x): Forward pass during testing.
        forward_train(x, targets=None): Forward pass during training.

    Returns:
        Depending on the mode (training or testing), the forward method returns either the loss and logits (during training)
        or the predicted indices and probabilities (during testing).
    """

    def __init__(self,
                 in_channels,
                 dim,
                 out_channels,
                 num_layer=2,
                 drop_path_rate=0.1,
                 max_len=25,
                 vis_seq=50,
                 ch=False,
                 ar=False,
                 refine_iter=0,
                 quesall=True,
                 next_pred=False,
                 ds=False,
                 pos2d=False,
                 check_search=False,
                 max_size=[8, 32],
                 **kwargs):
        super(IGTRDecoder, self).__init__()

        self.out_channels = out_channels
        self.dim = dim
        self.max_len = max_len + 3  # max_len + eos + bos
        self.ch = ch
        self.char_embed = Embeddings(d_model=dim,
                                     vocab=self.out_channels,
                                     scale_embedding=True)
        self.ignore_index = out_channels - 1
        self.ar = ar
        self.refine_iter = refine_iter
        self.bos = self.out_channels - 2
        self.eos = 0
        self.next_pred = next_pred
        self.quesall = quesall
        self.check_search = check_search
        dpr = np.linspace(0, drop_path_rate, num_layer + 2)

        self.cmff_decoder = nn.ModuleList([
            CMFFLayer(dim=dim,
                      num_heads=dim // 32,
                      mlp_ratio=4.0,
                      qkv_bias=True,
                      drop_path=dpr[i]) for i in range(num_layer)
        ])

        self.answer_to_question_layer = DecoderLayer(dim=dim,
                                                     num_heads=dim // 32,
                                                     mlp_ratio=4.0,
                                                     qkv_bias=True,
                                                     drop_path=dpr[-2])
        self.answer_to_image_layer = DecoderLayer(dim=dim,
                                                  num_heads=dim // 32,
                                                  mlp_ratio=4.0,
                                                  qkv_bias=True,
                                                  drop_path=dpr[-1])

        self.char_pos_embed = nn.Parameter(torch.zeros([self.max_len, dim],
                                                       dtype=torch.float32),
                                           requires_grad=True)
        self.appear_num_embed = nn.Parameter(torch.zeros([self.max_len, dim],
                                                         dtype=torch.float32),
                                             requires_grad=True)
        self.ds = ds
        self.pos2d = pos2d
        if not ds:
            self.vis_pos_embed = nn.Parameter(torch.zeros([1, vis_seq, dim],
                                                          dtype=torch.float32),
                                              requires_grad=True)
            trunc_normal_(self.vis_pos_embed, std=0.02)
        elif pos2d:
            pos_embed = torch.zeros([1, max_size[0] * max_size[1], dim],
                                    dtype=torch.float32)
            trunc_normal_(pos_embed, mean=0, std=0.02)
            self.vis_pos_embed = nn.Parameter(
                pos_embed.transpose(1, 2).reshape(1, dim, max_size[0],
                                                  max_size[1]),
                requires_grad=True,
            )
        self.prompt_pos_embed = nn.Parameter(torch.zeros([1, 6, dim],
                                                         dtype=torch.float32),
                                             requires_grad=True)

        self.answer_query = nn.Parameter(torch.zeros([1, 1, dim],
                                                     dtype=torch.float32),
                                         requires_grad=True)
        self.norm_pred = nn.LayerNorm(dim, eps=1e-6)
        self.ques1_head = nn.Linear(dim, self.out_channels - 2)
        self.ques2_head = nn.Linear(dim, self.max_len, bias=False)
        self.ques3_head = nn.Linear(dim, self.max_len - 1)
        self.ques4_head = nn.Linear(dim, self.max_len - 1)
        trunc_normal_(self.char_pos_embed, std=0.02)
        trunc_normal_(self.appear_num_embed, std=0.02)
        trunc_normal_(self.answer_query, std=0.02)
        trunc_normal_(self.prompt_pos_embed, std=0.02)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                zeros_(m.bias)
        elif isinstance(m, nn.LayerNorm):
            zeros_(m.bias)
            ones_(m.weight)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {
            'char_pos_embed', 'vis_pos_embed', 'appear_num_embed',
            'answer_query', 'char_embed'
        }

    def question_encoder(self, targets, train_i):
        (
            prompt_pos_idx,
            prompt_char_idx,
            ques_pos_idx,
            ques1_answer,
            ques2_char_idx,
            ques2_answer,
            ques4_char_num,
            ques_len,
            ques2_len,
            prompt_len,
        ) = targets
        max_ques_len = torch.max(ques_len)
        max_ques2_len = torch.max(ques2_len)
        max_prompt_len = torch.max(prompt_len)
        if self.next_pred and (train_i == 2 or train_i == 3):
            prompt_pos = self.prompt_pos_embed
            prompt_char_idx = prompt_char_idx[:, :max_prompt_len]
        else:
            prompt_pos = F.embedding(
                prompt_pos_idx[:, :max_prompt_len], self.char_pos_embed
            )  # bs lp [ 0,  4,  3, 12, 12, 12, 12, 12, 12, 12, 12]
            prompt_char_idx = prompt_char_idx[:, :max_prompt_len]
        prompt_char = self.char_embed(prompt_char_idx)  # bs lp

        prompt = prompt_pos + prompt_char
        mask_1234 = torch.where(prompt_char_idx == self.ignore_index,
                                float('-inf'), 0)

        ques1 = F.embedding(ques_pos_idx[:, :max_ques_len],
                            self.char_pos_embed)  # bs lq1 dim
        ques1_answer = ques1_answer[:, :max_ques_len]
        if self.quesall or train_i == 0:
            ques2_char = self.char_embed(ques2_char_idx[:, :max_ques2_len, 1])
            ques2 = ques2_char + F.embedding(ques2_char_idx[:, :max_ques2_len,
                                                            0],
                                             self.char_pos_embed)  # bs lq2 dim
            ques2_answer = ques2_answer[:, :max_ques2_len]
            ques2_head = F.embedding(ques2_char_idx[:, :max_ques2_len, 0],
                                     self.ques2_head.weight)
            ques4_char = self.char_embed(ques1_answer)
            ques4_ap_num = F.embedding(ques4_char_num[:, :max_ques_len],
                                       self.appear_num_embed)
            ques4 = ques4_char + ques4_ap_num
            ques4_answer = ques_pos_idx[:, :max_ques_len]

            return (
                prompt,
                ques1,
                ques2,
                ques2_head,
                ques4,
                ques1_answer,
                ques2_answer,
                ques4_answer,
                mask_1234.unsqueeze(1),
            )
        else:
            return prompt, ques1, ques1_answer, mask_1234.unsqueeze(1)

    def forward(self, x, data=None):
        if self.training:
            return self.forward_train(x, data)
        else:
            return self.forward_test(x)

    def forward_test(self, x):
        """
        Perform the forward pass for the test phase.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, channels, height, width).

        Returns:
            torch.Tensor or List[torch.Tensor]: The output logits or a list containing predicted indices and probabilities.

        The function handles different modes of operation based on the attributes:
        - `self.ds`: Determines if positional embedding is added to the input tensor.
        - `self.pos2d`: Determines if the positional embedding is 2D.
        - `self.ar`: Determines if autoregressive decoding is used.
        - `self.check_search`: Determines if beam search is used.
        - `self.next_pred`: Determines if next token prediction is used.
        - `self.refine_iter`: Number of refinement iterations for the predictions.

        The function performs the following steps:
        1. Adds positional embeddings to the input tensor if required.
        2. Initializes the BOS (beginning of sequence) prompt.
        3. Depending on the mode, performs decoding using different strategies:
            - Beam search decoding.
            - Autoregressive decoding.
            - Next token prediction.
        4. If refinement iterations are specified, refines the predictions.
        5. Returns the final logits or the predicted indices and probabilities.
        """
        if not self.ds:
            visual_f = x + self.vis_pos_embed
        elif self.pos2d:
            x = x + self.vis_pos_embed[:, :, :x.shape[2], :x.shape[3]]
            visual_f = x.flatten(2).transpose(1, 2)
        else:
            visual_f = x
        bs = x.shape[0]
        prompt_bos = self.char_embed(
            torch.full(
                [bs, 1], self.bos, dtype=torch.long,
                device=x.get_device())) + self.char_pos_embed[:1, :].unsqueeze(
                    0)  # BOS prompt
        ques_all = torch.tile(self.char_pos_embed.unsqueeze(0), (bs, 1, 1))
        if not self.ar:
            if self.check_search:
                tgt_in = torch.full((bs, self.max_len),
                                    self.ignore_index,
                                    dtype=torch.long,
                                    device=x.get_device())
                tgt_in[:, 0] = self.bos
                logits = []
                for j in range(1, self.max_len):
                    visual_f_check = visual_f
                    ques_check_i = ques_all[:, j:j + 1, :] + self.char_embed(
                        torch.arange(self.out_channels - 2,
                                     device=x.get_device())).unsqueeze(0)
                    prompt_check = ques_all[:, :j] + self.char_embed(
                        tgt_in[:, :j])
                    # prompt_check = prompt_bos
                    mask = torch.where(
                        (tgt_in[:, :j] == self.eos).int().cumsum(-1) > 0,
                        float('-inf'), 0)
                    for layer in self.cmff_decoder:
                        ques_check_i, prompt_check, visual_f_check = layer(
                            ques_check_i, prompt_check, visual_f_check,
                            mask.unsqueeze(1))
                    answer_query_i = self.answer_to_question_layer(
                        ques_check_i, prompt_check, mask.unsqueeze(1))
                    answer_pred_i = self.norm_pred(
                        self.answer_to_image_layer(
                            answer_query_i, visual_f_check))  # B, 26, 37
                    # the next token probability is in the output's ith token position
                    fc_2 = self.ques2_head.weight[j:j + 1].unsqueeze(0)
                    fc_2 = fc_2.tile([bs, 1, 1])
                    p_i = fc_2 @ answer_pred_i.transpose(1, 2)
                    # p_i = p_i[:, 0, :]
                    logits.append(p_i)
                    if j < self.max_len - 1:
                        # greedy decode. add the next token index to the target input
                        tgt_in[:, j] = p_i.squeeze().argmax(-1)
                        # Efficient batch decoding: If all output words have at least one EOS token, end decoding.
                        if (tgt_in == self.eos).any(dim=-1).all():
                            break
                logits = torch.cat(logits, dim=1)
            else:
                ques_pd = ques_all[:, 1:, :]
                prompt_pd = prompt_bos
                visual_f_pd = visual_f
                for layer in self.cmff_decoder:
                    ques_pd, prompt_pd, visual_f_pd = layer(
                        ques_pd, prompt_pd, visual_f_pd)
                answer_query_pd = self.answer_to_question_layer(
                    ques_pd, prompt_pd)
                answer_feats_pd = self.norm_pred(
                    self.answer_to_image_layer(answer_query_pd,
                                               visual_f_pd))  # B, 26, 37
                logits = self.ques1_head(answer_feats_pd)
        elif self.next_pred:
            ques_pd_1 = ques_all[:, 1:2, :]
            prompt_pd = prompt_bos
            visual_f_pd = visual_f
            for layer in self.cmff_decoder:
                ques_pd_1, prompt_pd, visual_f_pd = layer(
                    ques_pd_1, prompt_pd, visual_f_pd)
            answer_query_pd = self.answer_to_question_layer(
                ques_pd_1, prompt_pd)
            answer_feats_pd = self.norm_pred(
                self.answer_to_image_layer(answer_query_pd,
                                           visual_f_pd))  # B, 26, 37
            logits_pd_1 = self.ques1_head(answer_feats_pd)

            ques_next = self.char_pos_embed[-2:-1, :].unsqueeze(0).tile(
                [bs, 1, 1])
            prompt_next_bos = (self.char_embed(
                torch.full(
                    [bs, 1], self.bos, dtype=torch.long,
                    device=x.get_device())) + self.prompt_pos_embed[:, :1, :])
            pred_prob, pred_id = F.softmax(logits_pd_1, -1).max(-1)
            pred_prob_list = [pred_prob]
            pred_id_list = [pred_id]
            for j in range(1, 70):
                prompt_next_1 = self.char_embed(
                    pred_id) + self.prompt_pos_embed[:,
                                                     -1 * pred_id.shape[1]:, :]
                prompt_next = torch.concat([prompt_next_bos, prompt_next_1], 1)
                ques_next_i = ques_next
                visual_f_i = visual_f
                for layer in self.cmff_decoder:
                    ques_next_i, prompt_next, visual_f_pd = layer(
                        ques_next_i, prompt_next, visual_f_i)
                answer_query_next_i = self.answer_to_question_layer(
                    ques_next_i, prompt_next)
                answer_feats_next_i = self.norm_pred(
                    self.answer_to_image_layer(answer_query_next_i,
                                               visual_f_i))  # B, 26, 37
                logits_next_i = self.ques1_head(answer_feats_next_i)
                # pred_id = logits_next_i.argmax(-1)
                pred_prob_i, pred_id_i = F.softmax(logits_next_i, -1).max(-1)
                pred_prob_list.append(pred_prob_i)
                pred_id_list.append(pred_id_i)
                if (torch.concat(pred_id_list,
                                 1) == self.eos).any(dim=-1).all():
                    break
                if pred_id.shape[1] >= 5:
                    pred_id = torch.concat([pred_id[:, 1:], pred_id_i], 1)
                else:
                    pred_id = torch.concat([pred_id, pred_id_i], 1)
            return [
                torch.concat(pred_id_list, 1),
                torch.concat(pred_prob_list, 1)
            ]

        else:
            tgt_in = torch.full((bs, self.max_len),
                                self.ignore_index,
                                dtype=torch.long,
                                device=x.get_device())
            tgt_in[:, 0] = self.bos
            logits = []
            for j in range(1, self.max_len):
                visual_f_ar = visual_f
                ques_i = ques_all[:, j:j + 1, :]
                prompt_ar = ques_all[:, :j] + self.char_embed(tgt_in[:, :j])
                mask = torch.where(
                    (tgt_in[:, :j] == self.eos).int().cumsum(-1) > 0,
                    float('-inf'), 0)
                for layer in self.cmff_decoder:
                    ques_i, prompt_ar, visual_f_ar = layer(
                        ques_i, prompt_ar, visual_f_ar, mask.unsqueeze(1))
                answer_query_i = self.answer_to_question_layer(
                    ques_i, prompt_ar, mask.unsqueeze(1))
                answer_pred_i = self.norm_pred(
                    self.answer_to_image_layer(answer_query_i,
                                               visual_f_ar))  # B, 26, 37
                # the next token probability is in the output's ith token position
                p_i = self.ques1_head(answer_pred_i)
                logits.append(p_i)
                if j < self.max_len - 1:
                    # greedy decode. add the next token index to the target input
                    tgt_in[:, j] = p_i.squeeze().argmax(-1)

                    # Efficient batch decoding: If all output words have at least one EOS token, end decoding.
                    if (tgt_in == self.eos).any(dim=-1).all():
                        break
            logits = torch.cat(logits, dim=1)

        if self.refine_iter > 0:
            pred_probs, pred_idxs = F.softmax(logits, -1).max(-1)
            for i in range(self.refine_iter):

                mask_check = (pred_idxs == self.eos).int().cumsum(-1) <= 1

                ques_check_all = self.char_embed(
                    pred_idxs) + ques_all[:, 1:pred_idxs.shape[1] + 1, :]
                prompt_check = prompt_bos
                visual_f_check = visual_f
                ques_check = ques_check_all
                for layer in self.cmff_decoder:
                    ques_check, prompt_check, visual_f_check = layer(
                        ques_check, prompt_check, visual_f_check)
                answer_query_check = self.answer_to_question_layer(
                    ques_check, prompt_check)
                answer_pred_check = self.norm_pred(
                    self.answer_to_image_layer(answer_query_check,
                                               visual_f_check))  # B, 26, 37
                ques2_head = self.ques2_head.weight[1:pred_idxs.shape[1] +
                                                    1, :]
                ques2_head = torch.tile(ques2_head.unsqueeze(0), [bs, 1, 1])
                answer2_pred = answer_pred_check.matmul(
                    ques2_head.transpose(1, 2))
                diag_mask = torch.eye(answer2_pred.shape[1],
                                      device=x.get_device()).unsqueeze(0).tile(
                                          [bs, 1, 1])
                answer2_pred = F.sigmoid(
                    (answer2_pred * diag_mask).sum(-1)) * mask_check

                check_result = answer2_pred < 0.9  # pred_probs < 0.99

                prompt_refine = torch.concat([prompt_bos, ques_check_all], 1)
                mask_refine = torch.where(
                    check_result, float('-inf'), 0) + torch.where(
                        (pred_idxs == self.eos).int().cumsum(-1) < 1, 0,
                        float('-inf'))
                mask_refine = torch.concat(
                    [torch.zeros([bs, 1], device=x.get_device()), mask_refine],
                    1).unsqueeze(1)
                ques_refine = ques_all[:, 1:pred_idxs.shape[1] + 1, :]
                visual_f_refine = visual_f
                for layer in self.cmff_decoder:
                    ques_refine, prompt_refine, visual_f_refine = layer(
                        ques_refine, prompt_refine, visual_f_refine,
                        mask_refine)
                answer_query_refine = self.answer_to_question_layer(
                    ques_refine, prompt_refine, mask_refine)
                answer_pred_refine = self.norm_pred(
                    self.answer_to_image_layer(answer_query_refine,
                                               visual_f_refine))  # B, 26, 37
                answer_refine = self.ques1_head(answer_pred_refine)
                refine_probs, refine_idxs = F.softmax(answer_refine,
                                                      -1).max(-1)
                pred_idxs_refine = torch.where(check_result, refine_idxs,
                                               pred_idxs)
                pred_idxs = torch.where(mask_check, pred_idxs_refine,
                                        pred_idxs)
                pred_probs_refine = torch.where(check_result, refine_probs,
                                                pred_probs)
                pred_probs = torch.where(mask_check, pred_probs_refine,
                                         pred_probs)

            return [pred_idxs, pred_probs]

        return F.softmax(logits, -1)

    def forward_train(self, x, targets=None):
        """
        Forward pass for training the model.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, ...).
            targets (list, optional): List of target tensors. The list should contain:
                - targets[1]: Tensor of shape (batch_size, ...), prompt position indices.
                - targets[2]: Tensor of shape (batch_size, ...), prompt character indices.
                - targets[3]: Tensor of shape (batch_size, ...), question position indices.
                - targets[4]: Tensor of shape (batch_size, ...), question 1 answers.
                - targets[5]: Tensor of shape (batch_size, ...), question 2 character indices.
                - targets[6]: Tensor of shape (batch_size, ...), question 2 answers.
                - targets[7]: Tensor of shape (batch_size, ..., 2), question 3 character indices and answers.
                - targets[8]: Tensor of shape (batch_size, ...), question 4 character numbers.
                - targets[9]: Tensor of shape (batch_size, ...), question lengths.
                - targets[10]: Tensor of shape (batch_size, ...), prompt lengths.
                - targets[11]: Tensor of shape (batch_size, ...), question 4 answers.

        Returns:
            list: A list containing:
                - loss (dict): Dictionary containing the total loss and individual losses for each question.
                    - 'loss': Total loss.
                    - 'loss1': Loss for question 1.
                    - 'loss2': Loss for question 2.
                    - 'loss3': Loss for question 3.
                    - 'loss4': Loss for question 4.
                - logits (torch.Tensor): Logits for question 1 predictions.
        """

        bs = x.shape[0]
        answer_token = torch.tile(self.answer_query, (bs, 1, 1))
        if self.ch:
            ques3 = self.char_embed(targets[7][:, :,
                                               0]) + answer_token  # bs nc dim
            ques3_answer = targets[7][:, :, 1]
        else:
            ques3 = self.char_embed(
                torch.arange(self.out_channels - 2, device=x.get_device())
            ).unsqueeze(0) + answer_token  # bs nc dim
            ques3_answer = targets[7]
        loss1_list = []
        loss2_list = []
        loss3_list = []
        loss4_list = []
        sampler1_num = 0
        sampler2_num = 0
        sampler3_num = 0
        sampler4_num = 0
        if not self.ds:
            visual_f = x + self.vis_pos_embed
        elif self.pos2d:
            x = x + self.vis_pos_embed[:, :, :x.shape[2], :x.shape[3]]
            visual_f = x.flatten(2).transpose(1, 2)
        else:
            visual_f = x
        train_i = 0
        for target_ in zip(
                targets[1].transpose(0, 1),
                targets[2].transpose(0, 1),
                targets[3].transpose(0, 1),
                targets[4].transpose(0, 1),
                targets[5].transpose(0, 1),
                targets[6].transpose(0, 1),
                targets[8].transpose(0, 1),
                targets[9].transpose(0, 1),
                targets[10].transpose(0, 1),
                targets[11].transpose(0, 1),
        ):
            # target_ = [prompt_pos_idx, prompt_char_idx, ques_pos_idx, ques1_answer, \
            # ques2_char_idx, ques2_answer, ques4_char_num, ques_len, prompt_len]
            visual_f_1234 = visual_f
            if self.quesall or train_i == 0:
                (
                    prompt,
                    ques1,
                    ques2,
                    ques2_head,
                    ques4,
                    ques1_answer,
                    ques2_answer,
                    ques4_answer,
                    mask_1234,
                ) = self.question_encoder(target_, train_i)
                prompt_1234 = prompt
                ques_1234 = torch.concat([ques1, ques2, ques3, ques4], 1)
                for layer in self.cmff_decoder:
                    ques_1234, prompt_1234, visual_f_1234 = layer(
                        ques_1234, prompt_1234, visual_f_1234, mask_1234)
                answer_query_1234 = self.answer_to_question_layer(
                    ques_1234, prompt_1234, mask_1234)
                answer_feats_1234 = self.norm_pred(
                    self.answer_to_image_layer(answer_query_1234,
                                               visual_f_1234))  # B, 26, 37

                answer_feats_1 = answer_feats_1234[:, :ques1.shape[1], :]
                answer_feats_2 = answer_feats_1234[:, ques1.shape[1]:(
                    ques1.shape[1] + ques2.shape[1]), :]
                answer_feats_3 = answer_feats_1234[:, (
                    ques1.shape[1] + ques2.shape[1]):-ques4.shape[1], :]
                answer_feats_4 = answer_feats_1234[:, -ques4.shape[1]:, :]

                answer1_pred = self.ques1_head(answer_feats_1)
                if train_i == 0:
                    logits = answer1_pred

                n = (ques1_answer != self.ignore_index).sum().item()
                loss1 = n * F.cross_entropy(
                    answer1_pred.flatten(0, 1),
                    ques1_answer.flatten(0, 1),
                    ignore_index=self.ignore_index,
                    reduction='mean',
                )
                sampler1_num += n
                loss1_list.append(loss1)

                answer2_pred = answer_feats_2.matmul(ques2_head.transpose(
                    1, 2))
                diag_mask = torch.eye(answer2_pred.shape[1],
                                      device=x.get_device()).unsqueeze(0).tile(
                                          [bs, 1, 1])
                answer2_pred = (answer2_pred * diag_mask).sum(-1)

                ques2_answer = ques2_answer.flatten(0, 1)
                non_pad_mask = torch.not_equal(ques2_answer, self.ignore_index)
                n = non_pad_mask.sum().item()
                ques2_answer = torch.where(ques2_answer == self.ignore_index,
                                           0, ques2_answer)
                loss2_none = F.binary_cross_entropy_with_logits(
                    answer2_pred.flatten(0, 1), ques2_answer, reduction='none')
                loss2 = n * loss2_none.masked_select(non_pad_mask).mean()
                sampler2_num += n
                loss2_list.append(loss2)

                answer3_pred = self.ques3_head(answer_feats_3)
                n = (ques3_answer != self.ignore_index).sum().item()
                loss3 = n * F.cross_entropy(answer3_pred.flatten(0, 1),
                                            ques3_answer.flatten(0, 1),
                                            reduction='mean')
                sampler3_num += n
                loss3_list.append(loss3)

                answer4_pred = self.ques4_head(answer_feats_4)
                n = (ques4_answer != self.max_len - 1).sum().item()
                loss4 = n * F.cross_entropy(
                    answer4_pred.flatten(0, 1),
                    ques4_answer.flatten(0, 1),
                    ignore_index=self.max_len - 1,
                    reduction='mean',
                )
                sampler4_num += n
                loss4_list.append(loss4)
            else:
                prompt, ques1, ques1_answer, mask_1234 = self.question_encoder(
                    target_, train_i)
                prompt_1234 = prompt
                for layer in self.cmff_decoder:
                    ques1, prompt_1234, visual_f_1234 = layer(
                        ques1, prompt_1234, visual_f_1234, mask_1234)
                answer_query_1 = self.answer_to_question_layer(
                    ques1, prompt_1234, mask_1234)
                answer_feats_1 = self.norm_pred(
                    self.answer_to_image_layer(answer_query_1,
                                               visual_f_1234))  # B, 26, 37
                answer1_pred = self.ques1_head(answer_feats_1)
                n = (ques1_answer != self.ignore_index).sum().item()
                loss1 = n * F.cross_entropy(
                    answer1_pred.flatten(0, 1),
                    ques1_answer.flatten(0, 1),
                    ignore_index=self.ignore_index,
                    reduction='mean',
                )
                sampler1_num += n
                loss1_list.append(loss1)
            train_i += 1

        loss_list = [
            sum(loss1_list) / sampler1_num,
            sum(loss2_list) / sampler2_num,
            sum(loss3_list) / sampler3_num,
            sum(loss4_list) / sampler4_num,
        ]
        loss = {
            'loss': sum(loss_list),
            'loss1': loss_list[0],
            'loss2': loss_list[1],
            'loss3': loss_list[2],
            'loss4': loss_list[3],
        }
        return [loss, logits]