Spaces:
Running
Running
File size: 39,298 Bytes
5de2f8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 |
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.init import ones_, trunc_normal_, zeros_
from openrec.modeling.common import DropPath, Identity, Mlp
from openrec.modeling.decoders.nrtr_decoder import Embeddings
class CrossAttention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, q, kv, key_mask=None):
N, C = kv.shape[1:]
QN = q.shape[1]
q = self.q(q).reshape([-1, QN, self.num_heads,
C // self.num_heads]).transpose(1, 2)
q = q * self.scale
k, v = self.kv(kv).reshape(
[-1, N, 2, self.num_heads,
C // self.num_heads]).permute(2, 0, 3, 1, 4)
attn = q.matmul(k.transpose(2, 3))
if key_mask is not None:
attn = attn + key_mask.unsqueeze(1)
attn = F.softmax(attn, -1)
if not self.training:
self.attn_map = attn
attn = self.attn_drop(attn)
x = (attn.matmul(v)).transpose(1, 2).reshape((-1, QN, C))
x = self.proj(x)
x = self.proj_drop(x)
return x
class EdgeDecoderLayer(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=[0.0, 0.0],
act_layer=nn.GELU,
norm_layer='nn.LayerNorm',
epsilon=1e-6,
):
super().__init__()
self.head_dim = dim // num_heads
self.scale = qk_scale or self.head_dim**-0.5
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path1 = DropPath(
drop_path[0]) if drop_path[0] > 0.0 else Identity()
self.norm1 = eval(norm_layer)(dim, eps=epsilon)
self.norm2 = eval(norm_layer)(dim, eps=epsilon)
# self.c = nn.Linear(dim, dim*2)
self.p = nn.Linear(dim, dim)
self.cv = nn.Linear(dim, dim)
self.pv = nn.Linear(dim, dim)
self.dim = dim
self.num_heads = num_heads
self.p_proj = nn.Linear(dim, dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp_ratio = mlp_ratio
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
def forward(self, p, cv, pv):
pN = p.shape[1]
vN = cv.shape[1]
p_shortcut = p
p1 = self.p(p).reshape(
[-1, pN, self.num_heads,
self.dim // self.num_heads]).transpose(1, 2)
cv1 = self.cv(cv).reshape(
[-1, vN, self.num_heads,
self.dim // self.num_heads]).transpose(1, 2)
pv1 = self.pv(pv).reshape(
[-1, vN, self.num_heads,
self.dim // self.num_heads]).transpose(1, 2)
edge = F.softmax(p1.matmul(pv1.transpose(2, 3)), -1) # B h N N
p_c = (edge @ cv1).transpose(1, 2).reshape((-1, pN, self.dim))
x1 = self.norm1(p_shortcut + self.drop_path1(self.p_proj(p_c)))
x = self.norm2(x1 + self.drop_path1(self.mlp(x1)))
return x
class DecoderLayer(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer='nn.LayerNorm',
epsilon=1e-6,
):
super().__init__()
self.norm1 = eval(norm_layer)(dim, eps=epsilon)
self.normkv = eval(norm_layer)(dim, eps=epsilon)
self.mixer = CrossAttention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity()
self.norm2 = eval(norm_layer)(dim, eps=epsilon)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp_ratio = mlp_ratio
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
def forward(self, q, kv, key_mask=None):
x1 = q + self.drop_path(
self.mixer(self.norm1(q), self.normkv(kv), key_mask))
x = x1 + self.drop_path(self.mlp(self.norm2(x1)))
return x
class CMFFLayer(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
epsilon=1e-6,
):
super().__init__()
self.normq1 = nn.LayerNorm(dim, eps=epsilon)
self.normkv1 = nn.LayerNorm(dim, eps=epsilon)
self.images_to_question_cross_attn = CrossAttention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
self.normq2 = nn.LayerNorm(dim, eps=epsilon)
self.normkv2 = nn.LayerNorm(dim, eps=epsilon)
self.question_to_images_cross_attn = CrossAttention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity()
self.normmlp = nn.LayerNorm(dim, eps=epsilon)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
def forward(self, question_f, prompt_f, visual_f, mask=None):
query_add = torch.concat([question_f, prompt_f, visual_f], 1)
query_add = query_add + self.drop_path(
self.images_to_question_cross_attn(self.normq1(query_add),
self.normkv1(prompt_f), mask))
query_add = query_add + self.drop_path(
self.question_to_images_cross_attn(
self.normq2(query_add),
self.normkv2(query_add[:, -visual_f.shape[1]:, :])))
query_updated = query_add + self.drop_path(
self.mlp(self.normmlp(query_add)))
question_f_updated = query_updated[:, :question_f.shape[1], :]
prompt_f_updated = query_updated[:, question_f.
shape[1]:-visual_f.shape[1], :]
visual_f_updated = query_updated[:, -visual_f.shape[1]:, :]
return question_f_updated, prompt_f_updated, visual_f_updated
class IGTRDecoder(nn.Module):
"""
IGTRDecoder is a neural network module designed for decoding tasks in OCR (Optical Character Recognition) systems.
It utilizes a combination of embedding layers, multi-head attention layers, and linear layers to process input sequences
and generate output sequences.
Args:
in_channels (int): Number of input channels.
dim (int): Dimension of the model.
out_channels (int): Number of output channels.
num_layer (int, optional): Number of layers in the decoder. Default is 2.
drop_path_rate (float, optional): Drop path rate for stochastic depth. Default is 0.1.
max_len (int, optional): Maximum length of the sequence. Default is 25.
vis_seq (int, optional): Length of the visual sequence. Default is 50.
ch (bool, optional): Flag for character embedding. Default is False.
ar (bool, optional): Flag for autoregressive decoding. Default is False.
refine_iter (int, optional): Number of refinement iterations. Default is 0.
quesall (bool, optional): Flag to use all questions. Default is True.
next_pred (bool, optional): Flag for next prediction. Default is False.
ds (bool, optional): Flag for downsampling. Default is False.
pos2d (bool, optional): Flag for 2D positional embedding. Default is False.
check_search (bool, optional): Flag for checking search. Default is False.
max_size (list, optional): Maximum size for 2D positional embedding. Default is [8, 32].
**kwargs: Additional keyword arguments.
Methods:
_init_weights(m): Initializes the weights of the module.
no_weight_decay(): Returns the parameters that should not have weight decay.
question_encoder(targets, train_i): Encodes the questions based on the targets and training index.
forward(x, data=None): Forward pass of the decoder. Calls either forward_train or forward_test based on the mode.
forward_test(x): Forward pass during testing.
forward_train(x, targets=None): Forward pass during training.
Returns:
Depending on the mode (training or testing), the forward method returns either the loss and logits (during training)
or the predicted indices and probabilities (during testing).
"""
def __init__(self,
in_channels,
dim,
out_channels,
num_layer=2,
drop_path_rate=0.1,
max_len=25,
vis_seq=50,
ch=False,
ar=False,
refine_iter=0,
quesall=True,
next_pred=False,
ds=False,
pos2d=False,
check_search=False,
max_size=[8, 32],
**kwargs):
super(IGTRDecoder, self).__init__()
self.out_channels = out_channels
self.dim = dim
self.max_len = max_len + 3 # max_len + eos + bos
self.ch = ch
self.char_embed = Embeddings(d_model=dim,
vocab=self.out_channels,
scale_embedding=True)
self.ignore_index = out_channels - 1
self.ar = ar
self.refine_iter = refine_iter
self.bos = self.out_channels - 2
self.eos = 0
self.next_pred = next_pred
self.quesall = quesall
self.check_search = check_search
dpr = np.linspace(0, drop_path_rate, num_layer + 2)
self.cmff_decoder = nn.ModuleList([
CMFFLayer(dim=dim,
num_heads=dim // 32,
mlp_ratio=4.0,
qkv_bias=True,
drop_path=dpr[i]) for i in range(num_layer)
])
self.answer_to_question_layer = DecoderLayer(dim=dim,
num_heads=dim // 32,
mlp_ratio=4.0,
qkv_bias=True,
drop_path=dpr[-2])
self.answer_to_image_layer = DecoderLayer(dim=dim,
num_heads=dim // 32,
mlp_ratio=4.0,
qkv_bias=True,
drop_path=dpr[-1])
self.char_pos_embed = nn.Parameter(torch.zeros([self.max_len, dim],
dtype=torch.float32),
requires_grad=True)
self.appear_num_embed = nn.Parameter(torch.zeros([self.max_len, dim],
dtype=torch.float32),
requires_grad=True)
self.ds = ds
self.pos2d = pos2d
if not ds:
self.vis_pos_embed = nn.Parameter(torch.zeros([1, vis_seq, dim],
dtype=torch.float32),
requires_grad=True)
trunc_normal_(self.vis_pos_embed, std=0.02)
elif pos2d:
pos_embed = torch.zeros([1, max_size[0] * max_size[1], dim],
dtype=torch.float32)
trunc_normal_(pos_embed, mean=0, std=0.02)
self.vis_pos_embed = nn.Parameter(
pos_embed.transpose(1, 2).reshape(1, dim, max_size[0],
max_size[1]),
requires_grad=True,
)
self.prompt_pos_embed = nn.Parameter(torch.zeros([1, 6, dim],
dtype=torch.float32),
requires_grad=True)
self.answer_query = nn.Parameter(torch.zeros([1, 1, dim],
dtype=torch.float32),
requires_grad=True)
self.norm_pred = nn.LayerNorm(dim, eps=1e-6)
self.ques1_head = nn.Linear(dim, self.out_channels - 2)
self.ques2_head = nn.Linear(dim, self.max_len, bias=False)
self.ques3_head = nn.Linear(dim, self.max_len - 1)
self.ques4_head = nn.Linear(dim, self.max_len - 1)
trunc_normal_(self.char_pos_embed, std=0.02)
trunc_normal_(self.appear_num_embed, std=0.02)
trunc_normal_(self.answer_query, std=0.02)
trunc_normal_(self.prompt_pos_embed, std=0.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
zeros_(m.bias)
ones_(m.weight)
@torch.jit.ignore
def no_weight_decay(self):
return {
'char_pos_embed', 'vis_pos_embed', 'appear_num_embed',
'answer_query', 'char_embed'
}
def question_encoder(self, targets, train_i):
(
prompt_pos_idx,
prompt_char_idx,
ques_pos_idx,
ques1_answer,
ques2_char_idx,
ques2_answer,
ques4_char_num,
ques_len,
ques2_len,
prompt_len,
) = targets
max_ques_len = torch.max(ques_len)
max_ques2_len = torch.max(ques2_len)
max_prompt_len = torch.max(prompt_len)
if self.next_pred and (train_i == 2 or train_i == 3):
prompt_pos = self.prompt_pos_embed
prompt_char_idx = prompt_char_idx[:, :max_prompt_len]
else:
prompt_pos = F.embedding(
prompt_pos_idx[:, :max_prompt_len], self.char_pos_embed
) # bs lp [ 0, 4, 3, 12, 12, 12, 12, 12, 12, 12, 12]
prompt_char_idx = prompt_char_idx[:, :max_prompt_len]
prompt_char = self.char_embed(prompt_char_idx) # bs lp
prompt = prompt_pos + prompt_char
mask_1234 = torch.where(prompt_char_idx == self.ignore_index,
float('-inf'), 0)
ques1 = F.embedding(ques_pos_idx[:, :max_ques_len],
self.char_pos_embed) # bs lq1 dim
ques1_answer = ques1_answer[:, :max_ques_len]
if self.quesall or train_i == 0:
ques2_char = self.char_embed(ques2_char_idx[:, :max_ques2_len, 1])
ques2 = ques2_char + F.embedding(ques2_char_idx[:, :max_ques2_len,
0],
self.char_pos_embed) # bs lq2 dim
ques2_answer = ques2_answer[:, :max_ques2_len]
ques2_head = F.embedding(ques2_char_idx[:, :max_ques2_len, 0],
self.ques2_head.weight)
ques4_char = self.char_embed(ques1_answer)
ques4_ap_num = F.embedding(ques4_char_num[:, :max_ques_len],
self.appear_num_embed)
ques4 = ques4_char + ques4_ap_num
ques4_answer = ques_pos_idx[:, :max_ques_len]
return (
prompt,
ques1,
ques2,
ques2_head,
ques4,
ques1_answer,
ques2_answer,
ques4_answer,
mask_1234.unsqueeze(1),
)
else:
return prompt, ques1, ques1_answer, mask_1234.unsqueeze(1)
def forward(self, x, data=None):
if self.training:
return self.forward_train(x, data)
else:
return self.forward_test(x)
def forward_test(self, x):
"""
Perform the forward pass for the test phase.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, channels, height, width).
Returns:
torch.Tensor or List[torch.Tensor]: The output logits or a list containing predicted indices and probabilities.
The function handles different modes of operation based on the attributes:
- `self.ds`: Determines if positional embedding is added to the input tensor.
- `self.pos2d`: Determines if the positional embedding is 2D.
- `self.ar`: Determines if autoregressive decoding is used.
- `self.check_search`: Determines if beam search is used.
- `self.next_pred`: Determines if next token prediction is used.
- `self.refine_iter`: Number of refinement iterations for the predictions.
The function performs the following steps:
1. Adds positional embeddings to the input tensor if required.
2. Initializes the BOS (beginning of sequence) prompt.
3. Depending on the mode, performs decoding using different strategies:
- Beam search decoding.
- Autoregressive decoding.
- Next token prediction.
4. If refinement iterations are specified, refines the predictions.
5. Returns the final logits or the predicted indices and probabilities.
"""
if not self.ds:
visual_f = x + self.vis_pos_embed
elif self.pos2d:
x = x + self.vis_pos_embed[:, :, :x.shape[2], :x.shape[3]]
visual_f = x.flatten(2).transpose(1, 2)
else:
visual_f = x
bs = x.shape[0]
prompt_bos = self.char_embed(
torch.full(
[bs, 1], self.bos, dtype=torch.long,
device=x.get_device())) + self.char_pos_embed[:1, :].unsqueeze(
0) # BOS prompt
ques_all = torch.tile(self.char_pos_embed.unsqueeze(0), (bs, 1, 1))
if not self.ar:
if self.check_search:
tgt_in = torch.full((bs, self.max_len),
self.ignore_index,
dtype=torch.long,
device=x.get_device())
tgt_in[:, 0] = self.bos
logits = []
for j in range(1, self.max_len):
visual_f_check = visual_f
ques_check_i = ques_all[:, j:j + 1, :] + self.char_embed(
torch.arange(self.out_channels - 2,
device=x.get_device())).unsqueeze(0)
prompt_check = ques_all[:, :j] + self.char_embed(
tgt_in[:, :j])
# prompt_check = prompt_bos
mask = torch.where(
(tgt_in[:, :j] == self.eos).int().cumsum(-1) > 0,
float('-inf'), 0)
for layer in self.cmff_decoder:
ques_check_i, prompt_check, visual_f_check = layer(
ques_check_i, prompt_check, visual_f_check,
mask.unsqueeze(1))
answer_query_i = self.answer_to_question_layer(
ques_check_i, prompt_check, mask.unsqueeze(1))
answer_pred_i = self.norm_pred(
self.answer_to_image_layer(
answer_query_i, visual_f_check)) # B, 26, 37
# the next token probability is in the output's ith token position
fc_2 = self.ques2_head.weight[j:j + 1].unsqueeze(0)
fc_2 = fc_2.tile([bs, 1, 1])
p_i = fc_2 @ answer_pred_i.transpose(1, 2)
# p_i = p_i[:, 0, :]
logits.append(p_i)
if j < self.max_len - 1:
# greedy decode. add the next token index to the target input
tgt_in[:, j] = p_i.squeeze().argmax(-1)
# Efficient batch decoding: If all output words have at least one EOS token, end decoding.
if (tgt_in == self.eos).any(dim=-1).all():
break
logits = torch.cat(logits, dim=1)
else:
ques_pd = ques_all[:, 1:, :]
prompt_pd = prompt_bos
visual_f_pd = visual_f
for layer in self.cmff_decoder:
ques_pd, prompt_pd, visual_f_pd = layer(
ques_pd, prompt_pd, visual_f_pd)
answer_query_pd = self.answer_to_question_layer(
ques_pd, prompt_pd)
answer_feats_pd = self.norm_pred(
self.answer_to_image_layer(answer_query_pd,
visual_f_pd)) # B, 26, 37
logits = self.ques1_head(answer_feats_pd)
elif self.next_pred:
ques_pd_1 = ques_all[:, 1:2, :]
prompt_pd = prompt_bos
visual_f_pd = visual_f
for layer in self.cmff_decoder:
ques_pd_1, prompt_pd, visual_f_pd = layer(
ques_pd_1, prompt_pd, visual_f_pd)
answer_query_pd = self.answer_to_question_layer(
ques_pd_1, prompt_pd)
answer_feats_pd = self.norm_pred(
self.answer_to_image_layer(answer_query_pd,
visual_f_pd)) # B, 26, 37
logits_pd_1 = self.ques1_head(answer_feats_pd)
ques_next = self.char_pos_embed[-2:-1, :].unsqueeze(0).tile(
[bs, 1, 1])
prompt_next_bos = (self.char_embed(
torch.full(
[bs, 1], self.bos, dtype=torch.long,
device=x.get_device())) + self.prompt_pos_embed[:, :1, :])
pred_prob, pred_id = F.softmax(logits_pd_1, -1).max(-1)
pred_prob_list = [pred_prob]
pred_id_list = [pred_id]
for j in range(1, 70):
prompt_next_1 = self.char_embed(
pred_id) + self.prompt_pos_embed[:,
-1 * pred_id.shape[1]:, :]
prompt_next = torch.concat([prompt_next_bos, prompt_next_1], 1)
ques_next_i = ques_next
visual_f_i = visual_f
for layer in self.cmff_decoder:
ques_next_i, prompt_next, visual_f_pd = layer(
ques_next_i, prompt_next, visual_f_i)
answer_query_next_i = self.answer_to_question_layer(
ques_next_i, prompt_next)
answer_feats_next_i = self.norm_pred(
self.answer_to_image_layer(answer_query_next_i,
visual_f_i)) # B, 26, 37
logits_next_i = self.ques1_head(answer_feats_next_i)
# pred_id = logits_next_i.argmax(-1)
pred_prob_i, pred_id_i = F.softmax(logits_next_i, -1).max(-1)
pred_prob_list.append(pred_prob_i)
pred_id_list.append(pred_id_i)
if (torch.concat(pred_id_list,
1) == self.eos).any(dim=-1).all():
break
if pred_id.shape[1] >= 5:
pred_id = torch.concat([pred_id[:, 1:], pred_id_i], 1)
else:
pred_id = torch.concat([pred_id, pred_id_i], 1)
return [
torch.concat(pred_id_list, 1),
torch.concat(pred_prob_list, 1)
]
else:
tgt_in = torch.full((bs, self.max_len),
self.ignore_index,
dtype=torch.long,
device=x.get_device())
tgt_in[:, 0] = self.bos
logits = []
for j in range(1, self.max_len):
visual_f_ar = visual_f
ques_i = ques_all[:, j:j + 1, :]
prompt_ar = ques_all[:, :j] + self.char_embed(tgt_in[:, :j])
mask = torch.where(
(tgt_in[:, :j] == self.eos).int().cumsum(-1) > 0,
float('-inf'), 0)
for layer in self.cmff_decoder:
ques_i, prompt_ar, visual_f_ar = layer(
ques_i, prompt_ar, visual_f_ar, mask.unsqueeze(1))
answer_query_i = self.answer_to_question_layer(
ques_i, prompt_ar, mask.unsqueeze(1))
answer_pred_i = self.norm_pred(
self.answer_to_image_layer(answer_query_i,
visual_f_ar)) # B, 26, 37
# the next token probability is in the output's ith token position
p_i = self.ques1_head(answer_pred_i)
logits.append(p_i)
if j < self.max_len - 1:
# greedy decode. add the next token index to the target input
tgt_in[:, j] = p_i.squeeze().argmax(-1)
# Efficient batch decoding: If all output words have at least one EOS token, end decoding.
if (tgt_in == self.eos).any(dim=-1).all():
break
logits = torch.cat(logits, dim=1)
if self.refine_iter > 0:
pred_probs, pred_idxs = F.softmax(logits, -1).max(-1)
for i in range(self.refine_iter):
mask_check = (pred_idxs == self.eos).int().cumsum(-1) <= 1
ques_check_all = self.char_embed(
pred_idxs) + ques_all[:, 1:pred_idxs.shape[1] + 1, :]
prompt_check = prompt_bos
visual_f_check = visual_f
ques_check = ques_check_all
for layer in self.cmff_decoder:
ques_check, prompt_check, visual_f_check = layer(
ques_check, prompt_check, visual_f_check)
answer_query_check = self.answer_to_question_layer(
ques_check, prompt_check)
answer_pred_check = self.norm_pred(
self.answer_to_image_layer(answer_query_check,
visual_f_check)) # B, 26, 37
ques2_head = self.ques2_head.weight[1:pred_idxs.shape[1] +
1, :]
ques2_head = torch.tile(ques2_head.unsqueeze(0), [bs, 1, 1])
answer2_pred = answer_pred_check.matmul(
ques2_head.transpose(1, 2))
diag_mask = torch.eye(answer2_pred.shape[1],
device=x.get_device()).unsqueeze(0).tile(
[bs, 1, 1])
answer2_pred = F.sigmoid(
(answer2_pred * diag_mask).sum(-1)) * mask_check
check_result = answer2_pred < 0.9 # pred_probs < 0.99
prompt_refine = torch.concat([prompt_bos, ques_check_all], 1)
mask_refine = torch.where(
check_result, float('-inf'), 0) + torch.where(
(pred_idxs == self.eos).int().cumsum(-1) < 1, 0,
float('-inf'))
mask_refine = torch.concat(
[torch.zeros([bs, 1], device=x.get_device()), mask_refine],
1).unsqueeze(1)
ques_refine = ques_all[:, 1:pred_idxs.shape[1] + 1, :]
visual_f_refine = visual_f
for layer in self.cmff_decoder:
ques_refine, prompt_refine, visual_f_refine = layer(
ques_refine, prompt_refine, visual_f_refine,
mask_refine)
answer_query_refine = self.answer_to_question_layer(
ques_refine, prompt_refine, mask_refine)
answer_pred_refine = self.norm_pred(
self.answer_to_image_layer(answer_query_refine,
visual_f_refine)) # B, 26, 37
answer_refine = self.ques1_head(answer_pred_refine)
refine_probs, refine_idxs = F.softmax(answer_refine,
-1).max(-1)
pred_idxs_refine = torch.where(check_result, refine_idxs,
pred_idxs)
pred_idxs = torch.where(mask_check, pred_idxs_refine,
pred_idxs)
pred_probs_refine = torch.where(check_result, refine_probs,
pred_probs)
pred_probs = torch.where(mask_check, pred_probs_refine,
pred_probs)
return [pred_idxs, pred_probs]
return F.softmax(logits, -1)
def forward_train(self, x, targets=None):
"""
Forward pass for training the model.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, ...).
targets (list, optional): List of target tensors. The list should contain:
- targets[1]: Tensor of shape (batch_size, ...), prompt position indices.
- targets[2]: Tensor of shape (batch_size, ...), prompt character indices.
- targets[3]: Tensor of shape (batch_size, ...), question position indices.
- targets[4]: Tensor of shape (batch_size, ...), question 1 answers.
- targets[5]: Tensor of shape (batch_size, ...), question 2 character indices.
- targets[6]: Tensor of shape (batch_size, ...), question 2 answers.
- targets[7]: Tensor of shape (batch_size, ..., 2), question 3 character indices and answers.
- targets[8]: Tensor of shape (batch_size, ...), question 4 character numbers.
- targets[9]: Tensor of shape (batch_size, ...), question lengths.
- targets[10]: Tensor of shape (batch_size, ...), prompt lengths.
- targets[11]: Tensor of shape (batch_size, ...), question 4 answers.
Returns:
list: A list containing:
- loss (dict): Dictionary containing the total loss and individual losses for each question.
- 'loss': Total loss.
- 'loss1': Loss for question 1.
- 'loss2': Loss for question 2.
- 'loss3': Loss for question 3.
- 'loss4': Loss for question 4.
- logits (torch.Tensor): Logits for question 1 predictions.
"""
bs = x.shape[0]
answer_token = torch.tile(self.answer_query, (bs, 1, 1))
if self.ch:
ques3 = self.char_embed(targets[7][:, :,
0]) + answer_token # bs nc dim
ques3_answer = targets[7][:, :, 1]
else:
ques3 = self.char_embed(
torch.arange(self.out_channels - 2, device=x.get_device())
).unsqueeze(0) + answer_token # bs nc dim
ques3_answer = targets[7]
loss1_list = []
loss2_list = []
loss3_list = []
loss4_list = []
sampler1_num = 0
sampler2_num = 0
sampler3_num = 0
sampler4_num = 0
if not self.ds:
visual_f = x + self.vis_pos_embed
elif self.pos2d:
x = x + self.vis_pos_embed[:, :, :x.shape[2], :x.shape[3]]
visual_f = x.flatten(2).transpose(1, 2)
else:
visual_f = x
train_i = 0
for target_ in zip(
targets[1].transpose(0, 1),
targets[2].transpose(0, 1),
targets[3].transpose(0, 1),
targets[4].transpose(0, 1),
targets[5].transpose(0, 1),
targets[6].transpose(0, 1),
targets[8].transpose(0, 1),
targets[9].transpose(0, 1),
targets[10].transpose(0, 1),
targets[11].transpose(0, 1),
):
# target_ = [prompt_pos_idx, prompt_char_idx, ques_pos_idx, ques1_answer, \
# ques2_char_idx, ques2_answer, ques4_char_num, ques_len, prompt_len]
visual_f_1234 = visual_f
if self.quesall or train_i == 0:
(
prompt,
ques1,
ques2,
ques2_head,
ques4,
ques1_answer,
ques2_answer,
ques4_answer,
mask_1234,
) = self.question_encoder(target_, train_i)
prompt_1234 = prompt
ques_1234 = torch.concat([ques1, ques2, ques3, ques4], 1)
for layer in self.cmff_decoder:
ques_1234, prompt_1234, visual_f_1234 = layer(
ques_1234, prompt_1234, visual_f_1234, mask_1234)
answer_query_1234 = self.answer_to_question_layer(
ques_1234, prompt_1234, mask_1234)
answer_feats_1234 = self.norm_pred(
self.answer_to_image_layer(answer_query_1234,
visual_f_1234)) # B, 26, 37
answer_feats_1 = answer_feats_1234[:, :ques1.shape[1], :]
answer_feats_2 = answer_feats_1234[:, ques1.shape[1]:(
ques1.shape[1] + ques2.shape[1]), :]
answer_feats_3 = answer_feats_1234[:, (
ques1.shape[1] + ques2.shape[1]):-ques4.shape[1], :]
answer_feats_4 = answer_feats_1234[:, -ques4.shape[1]:, :]
answer1_pred = self.ques1_head(answer_feats_1)
if train_i == 0:
logits = answer1_pred
n = (ques1_answer != self.ignore_index).sum().item()
loss1 = n * F.cross_entropy(
answer1_pred.flatten(0, 1),
ques1_answer.flatten(0, 1),
ignore_index=self.ignore_index,
reduction='mean',
)
sampler1_num += n
loss1_list.append(loss1)
answer2_pred = answer_feats_2.matmul(ques2_head.transpose(
1, 2))
diag_mask = torch.eye(answer2_pred.shape[1],
device=x.get_device()).unsqueeze(0).tile(
[bs, 1, 1])
answer2_pred = (answer2_pred * diag_mask).sum(-1)
ques2_answer = ques2_answer.flatten(0, 1)
non_pad_mask = torch.not_equal(ques2_answer, self.ignore_index)
n = non_pad_mask.sum().item()
ques2_answer = torch.where(ques2_answer == self.ignore_index,
0, ques2_answer)
loss2_none = F.binary_cross_entropy_with_logits(
answer2_pred.flatten(0, 1), ques2_answer, reduction='none')
loss2 = n * loss2_none.masked_select(non_pad_mask).mean()
sampler2_num += n
loss2_list.append(loss2)
answer3_pred = self.ques3_head(answer_feats_3)
n = (ques3_answer != self.ignore_index).sum().item()
loss3 = n * F.cross_entropy(answer3_pred.flatten(0, 1),
ques3_answer.flatten(0, 1),
reduction='mean')
sampler3_num += n
loss3_list.append(loss3)
answer4_pred = self.ques4_head(answer_feats_4)
n = (ques4_answer != self.max_len - 1).sum().item()
loss4 = n * F.cross_entropy(
answer4_pred.flatten(0, 1),
ques4_answer.flatten(0, 1),
ignore_index=self.max_len - 1,
reduction='mean',
)
sampler4_num += n
loss4_list.append(loss4)
else:
prompt, ques1, ques1_answer, mask_1234 = self.question_encoder(
target_, train_i)
prompt_1234 = prompt
for layer in self.cmff_decoder:
ques1, prompt_1234, visual_f_1234 = layer(
ques1, prompt_1234, visual_f_1234, mask_1234)
answer_query_1 = self.answer_to_question_layer(
ques1, prompt_1234, mask_1234)
answer_feats_1 = self.norm_pred(
self.answer_to_image_layer(answer_query_1,
visual_f_1234)) # B, 26, 37
answer1_pred = self.ques1_head(answer_feats_1)
n = (ques1_answer != self.ignore_index).sum().item()
loss1 = n * F.cross_entropy(
answer1_pred.flatten(0, 1),
ques1_answer.flatten(0, 1),
ignore_index=self.ignore_index,
reduction='mean',
)
sampler1_num += n
loss1_list.append(loss1)
train_i += 1
loss_list = [
sum(loss1_list) / sampler1_num,
sum(loss2_list) / sampler2_num,
sum(loss3_list) / sampler3_num,
sum(loss4_list) / sampler4_num,
]
loss = {
'loss': sum(loss_list),
'loss1': loss_list[0],
'loss2': loss_list[1],
'loss3': loss_list[2],
'loss4': loss_list[3],
}
return [loss, logits]
|