duyongkun
update app
5de2f8f
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""UniRecConfig model configuration"""
from collections import OrderedDict
from typing import Any, Mapping, Optional
from transformers import PreTrainedTokenizer
from transformers.configuration_utils import PretrainedConfig
from transformers.onnx import OnnxConfig, OnnxSeq2SeqConfigWithPast
from transformers.onnx.utils import compute_effective_axis_dimension
from transformers.utils import TensorType, is_torch_available, logging
logger = logging.get_logger(__name__)
class UniRecConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`M2M100Model`]. It is used to instantiate an
M2M100 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the M2M100
[facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the M2M100 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`M2M100Model`] or
d_model (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 12):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
classifier_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for classifier.
max_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
Example:
```python
>>> from transformers import M2M100Config, M2M100Model
>>> # Initializing a M2M100 facebook/m2m100_418M style configuration
>>> configuration = M2M100Config()
>>> # Initializing a model (with random weights) from the facebook/m2m100_418M style configuration
>>> model = M2M100Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = 'm2m_100'
keys_to_ignore_at_inference = ['past_key_values']
attribute_map = {
'num_attention_heads': 'encoder_attention_heads',
'hidden_size': 'd_model'
}
def __init__(
self,
vocab_size=50000,
max_position_embeddings=3072,
decoder_layers=6,
decoder_ffn_dim=1536,
decoder_attention_heads=6,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
use_cache=True,
is_encoder_decoder=True,
activation_function='relu',
d_model=384,
dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.0,
init_std=0.02,
decoder_start_token_id=0,
scale_embedding=True,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
depths=[2, 2, 9, 2],
dims=[64, 128, 256, 384],
mixer=[['Conv'] * 2, ['Conv'] * 2,
['Conv'] * 6 + ['FGlobal', 'Global', 'Global'], ['Global'] * 2],
num_heads=[2, 4, 4, 6],
sub_k=[[2, 2], [2, 2], [2, 2], [2, 2]],
mlp_ratio=4,
kernel_size=[3, 3],
drop_path_rate=0.1,
label_smoothing=0.1,
torch_dtype='bfloat16',
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.use_cache = use_cache
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
self.depths = depths
self.dims = dims
self.mixer = mixer
self.num_heads = num_heads
self.sub_k = sub_k
self.mlp_ratio = mlp_ratio
self.kernel_size = kernel_size
self.drop_path_rate = drop_path_rate
self.label_smoothing = label_smoothing
self.torch_dtype = torch_dtype
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
class UniRecOnnxConfig(OnnxSeq2SeqConfigWithPast):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
common_inputs = OrderedDict([
('input_ids', {
0: 'batch',
1: 'encoder_sequence'
}),
('attention_mask', {
0: 'batch',
1: 'encoder_sequence'
}),
])
if self.use_past:
common_inputs['decoder_input_ids'] = {0: 'batch'}
common_inputs['decoder_attention_mask'] = {
0: 'batch',
1: 'past_decoder_sequence + sequence'
}
else:
common_inputs['decoder_input_ids'] = {
0: 'batch',
1: 'decoder_sequence'
}
common_inputs['decoder_attention_mask'] = {
0: 'batch',
1: 'decoder_sequence'
}
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction='inputs')
return common_inputs
# Copied from BartOnnxConfig._generate_dummy_inputs_for_sequence_classification_and_question_answering
# A better name would be _generate_dummy_inputs_for_encoder_and_decoder because sequence classification and question
# answering are not supported for M2M100, but this name is preserved to be able to check that the copy matches what
# was done for BART so that it can be updated if need be.
def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(
batch_size,
fixed_dimension=OnnxConfig.default_fixed_batch,
num_token_to_add=0)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
seq_length = compute_effective_axis_dimension(
seq_length,
fixed_dimension=OnnxConfig.default_fixed_sequence,
num_token_to_add=token_to_add)
# Generate dummy inputs according to compute batch and sequence
dummy_input = [' '.join([tokenizer.unk_token]) * seq_length
] * batch_size
common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
return common_inputs
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig._generate_dummy_inputs_for_default_and_seq2seq_lm
def _generate_dummy_inputs_for_default_and_seq2seq_lm(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, seq_length, is_pair, framework)
# Generate decoder inputs
decoder_seq_length = seq_length if not self.use_past else 1
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, decoder_seq_length, is_pair, framework)
decoder_inputs = {
f'decoder_{name}': tensor
for name, tensor in decoder_inputs.items()
}
common_inputs = dict(**encoder_inputs, **decoder_inputs)
if self.use_past:
if not is_torch_available():
raise ValueError(
'Cannot generate dummy past_keys inputs without PyTorch installed.'
)
else:
import torch
batch, encoder_seq_length = common_inputs['input_ids'].shape
decoder_seq_length = common_inputs['decoder_input_ids'].shape[1]
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
encoder_shape = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
decoder_past_length = decoder_seq_length + 3
decoder_shape = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
common_inputs['decoder_attention_mask'] = torch.cat([
common_inputs['decoder_attention_mask'],
torch.ones(batch, decoder_past_length)
],
dim=1)
common_inputs['past_key_values'] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
num_encoder_layers, num_decoder_layers = self.num_layers
min_num_layers = min(num_encoder_layers, num_decoder_layers)
max_num_layers = max(num_encoder_layers,
num_decoder_layers) - min_num_layers
remaining_side_name = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder'
for _ in range(min_num_layers):
common_inputs['past_key_values'].append((
torch.zeros(decoder_shape),
torch.zeros(decoder_shape),
torch.zeros(encoder_shape),
torch.zeros(encoder_shape),
))
# TODO: test this.
shape = encoder_shape if remaining_side_name == 'encoder' else decoder_shape
for _ in range(min_num_layers, max_num_layers):
common_inputs['past_key_values'].append(
(torch.zeros(shape), torch.zeros(shape)))
return common_inputs
generate_dummy_inputs = _generate_dummy_inputs_for_default_and_seq2seq_lm
__all__ = ['M2M100Config', 'M2M100OnnxConfig']