Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import numpy as np
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from theme_tops import DarkTheme
|
| 8 |
+
from clip_base import OpenAiClipModel
|
| 9 |
+
import tensorflow as tf
|
| 10 |
+
tagged_images = {}
|
| 11 |
+
|
| 12 |
+
MODEL_PATH = os.path.join(os.getcwd(), 'clip_tflite_model.tflite')
|
| 13 |
+
JSON_PATH = os.path.join(os.getcwd(), 'categories.json')
|
| 14 |
+
|
| 15 |
+
def test_model(image):
|
| 16 |
+
"""Test the TFLite model with an uploaded image"""
|
| 17 |
+
try:
|
| 18 |
+
# Check if model and JSON files exist
|
| 19 |
+
if not os.path.exists(MODEL_PATH):
|
| 20 |
+
return "Error: Model file not found. Please generate the model first."
|
| 21 |
+
if not os.path.exists(JSON_PATH):
|
| 22 |
+
return "Error: Categories file not found. Please generate the model first."
|
| 23 |
+
|
| 24 |
+
# Load and preprocess image
|
| 25 |
+
processed_image = load_and_preprocess_image(image)
|
| 26 |
+
|
| 27 |
+
# Load the TFLite model
|
| 28 |
+
interpreter = tf.lite.Interpreter(model_path=MODEL_PATH)
|
| 29 |
+
interpreter.allocate_tensors()
|
| 30 |
+
|
| 31 |
+
# Get input and output details
|
| 32 |
+
input_details = interpreter.get_input_details()
|
| 33 |
+
output_details = interpreter.get_output_details()
|
| 34 |
+
|
| 35 |
+
interpreter.set_tensor(input_details[0]['index'], processed_image)
|
| 36 |
+
|
| 37 |
+
interpreter.invoke()
|
| 38 |
+
|
| 39 |
+
embeddings = interpreter.get_tensor(output_details[0]['index'])
|
| 40 |
+
|
| 41 |
+
with open(JSON_PATH, 'r') as f:
|
| 42 |
+
categories = json.load(f)
|
| 43 |
+
|
| 44 |
+
scores_with_ids = []
|
| 45 |
+
for i, score in enumerate(embeddings.flatten()):
|
| 46 |
+
scores_with_ids.append((float(score), i))
|
| 47 |
+
|
| 48 |
+
scores_with_ids.sort(reverse=True) # Sort by score (first element of tuple)
|
| 49 |
+
|
| 50 |
+
top_results = scores_with_ids[:5]
|
| 51 |
+
|
| 52 |
+
results = []
|
| 53 |
+
for score, category_id in top_results:
|
| 54 |
+
percentage = score * 100
|
| 55 |
+
category = next((cat['title'] for cat in categories if cat['id'] == category_id),
|
| 56 |
+
f"Category {category_id}")
|
| 57 |
+
results.append(f"{category}: {percentage:.2f}%")
|
| 58 |
+
|
| 59 |
+
return "\n".join(results)
|
| 60 |
+
|
| 61 |
+
except Exception as e:
|
| 62 |
+
return f"Error processing image: {str(e)}"
|
| 63 |
+
|
| 64 |
+
def load_and_preprocess_image(image):
|
| 65 |
+
"""Preprocess image for model input"""
|
| 66 |
+
if isinstance(image, str):
|
| 67 |
+
image = Image.open(image)
|
| 68 |
+
elif isinstance(image, np.ndarray):
|
| 69 |
+
image = Image.fromarray(image)
|
| 70 |
+
|
| 71 |
+
image = image.resize((224, 224))
|
| 72 |
+
image = image.convert('RGB')
|
| 73 |
+
image = np.array(image).astype(np.float32) / 255.0
|
| 74 |
+
image = np.expand_dims(image, axis=0)
|
| 75 |
+
return image
|
| 76 |
+
|
| 77 |
+
def process_images(payload):
|
| 78 |
+
tflite_model = OpenAiClipModel(payload=payload).build_model()
|
| 79 |
+
|
| 80 |
+
return tflite_model
|
| 81 |
+
|
| 82 |
+
# Function to add a new tag category
|
| 83 |
+
def add_tag_category(tag_category):
|
| 84 |
+
# Normalize and validate tag category
|
| 85 |
+
tag_category = tag_category.strip()
|
| 86 |
+
if not tag_category:
|
| 87 |
+
return "Please enter a valid tag category", None
|
| 88 |
+
|
| 89 |
+
# Initialize the tag category if it doesn't exist
|
| 90 |
+
if tag_category not in tagged_images:
|
| 91 |
+
tagged_images[tag_category] = []
|
| 92 |
+
|
| 93 |
+
return f"Tag Category '{tag_category}' Added", gr.File(visible=True), ""
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
# Function to get updated tag category choices
|
| 97 |
+
def get_tag_category_choices():
|
| 98 |
+
return gr.Dropdown(choices=list(tagged_images.keys()))
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def show_category_images(tag_category):
|
| 102 |
+
if not tag_category:
|
| 103 |
+
return None, None
|
| 104 |
+
|
| 105 |
+
if tag_category in tagged_images:
|
| 106 |
+
return (
|
| 107 |
+
gr.Gallery(value=tagged_images[tag_category]),
|
| 108 |
+
tagged_images[tag_category]
|
| 109 |
+
)
|
| 110 |
+
return None, None
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
# Function to upload images for a specific tag category
|
| 114 |
+
def upload_images_for_tag(tag_category, image_files):
|
| 115 |
+
# Ensure the tag category exists
|
| 116 |
+
if tag_category not in tagged_images:
|
| 117 |
+
return "Tag category not found. Add the tag category first.", None, None
|
| 118 |
+
|
| 119 |
+
# Replace existing images with new ones for the tag category
|
| 120 |
+
tagged_images[tag_category] = [file.name for file in image_files] # Replace instead of append
|
| 121 |
+
|
| 122 |
+
return (
|
| 123 |
+
f"Added {len(image_files)} images to '{tag_category}'",
|
| 124 |
+
gr.Gallery(value=[file.name for file in image_files]),
|
| 125 |
+
tagged_images
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
# Function to export tagged images
|
| 131 |
+
def export_tagged_images():
|
| 132 |
+
return tagged_images
|
| 133 |
+
|
| 134 |
+
def clear_uploaded_images():
|
| 135 |
+
return None, None
|
| 136 |
+
|
| 137 |
+
# Gradio UI
|
| 138 |
+
with gr.Blocks(theme=DarkTheme()) as demo:
|
| 139 |
+
gr.Markdown("# Clip -> Tflite - TOPS Infosolutions Pvt Ltd")
|
| 140 |
+
gr.Markdown("Add Classification Tags")
|
| 141 |
+
|
| 142 |
+
# Tag Category Input
|
| 143 |
+
with gr.Row():
|
| 144 |
+
tag_category_input = gr.Textbox(
|
| 145 |
+
label="Enter Tag Category",
|
| 146 |
+
placeholder="e.g., Smartphone, Laptop, Tablet"
|
| 147 |
+
)
|
| 148 |
+
# add_tag_category_btn = gr.Button("Add Tag Category")
|
| 149 |
+
tag_category_status = gr.Textbox(label="Action Status", interactive=False)
|
| 150 |
+
|
| 151 |
+
gr.Markdown("Images")
|
| 152 |
+
|
| 153 |
+
# Image Upload for Specific Tag
|
| 154 |
+
with gr.Row():
|
| 155 |
+
tag_category_selector = gr.Dropdown(label="Select Tag Category", choices=[])
|
| 156 |
+
image_upload = gr.File(
|
| 157 |
+
file_types=["image"],
|
| 158 |
+
file_count="multiple",
|
| 159 |
+
label="Upload Images",
|
| 160 |
+
visible=False
|
| 161 |
+
)
|
| 162 |
+
upload_images_btn = gr.Button("Upload Images for Category")
|
| 163 |
+
clear_upload_btn = gr.Button("Clear Upload")
|
| 164 |
+
|
| 165 |
+
# Image Gallery with smaller previews
|
| 166 |
+
image_gallery = gr.Gallery(
|
| 167 |
+
label="Uploaded Images",
|
| 168 |
+
columns=[6], # Show 4 images per row
|
| 169 |
+
rows=[1], # Show 2 rows
|
| 170 |
+
height="20",
|
| 171 |
+
object_fit="contain", # Maintain aspect ratio
|
| 172 |
+
preview=False,
|
| 173 |
+
show_label=False,
|
| 174 |
+
elem_classes="small-gallery" # Custom CSS class for additional styling
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
# Export Section
|
| 178 |
+
with gr.Row():
|
| 179 |
+
# export_btn = gr.Button("Export Tagged Images")
|
| 180 |
+
export_output = gr.JSON(label="Exported Tagged Images")
|
| 181 |
+
|
| 182 |
+
with gr.Row():
|
| 183 |
+
submit_btn = gr.Button("Process Images")
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
with gr.Row():
|
| 187 |
+
download_button_tflite = gr.File(
|
| 188 |
+
label="Download Tflite Model",
|
| 189 |
+
file_count="single",
|
| 190 |
+
interactive=False,
|
| 191 |
+
type="filepath"
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
with gr.Tab("Test Model"):
|
| 195 |
+
with gr.Row():
|
| 196 |
+
with gr.Column():
|
| 197 |
+
test_image = gr.Image(
|
| 198 |
+
label="Upload Image to Test",
|
| 199 |
+
type="numpy"
|
| 200 |
+
)
|
| 201 |
+
test_button = gr.Button("Test Image")
|
| 202 |
+
|
| 203 |
+
with gr.Column():
|
| 204 |
+
output_text = gr.Textbox(
|
| 205 |
+
label="Prediction Results",
|
| 206 |
+
lines=6,
|
| 207 |
+
interactive=False
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
test_button.click(
|
| 211 |
+
fn=test_model,
|
| 212 |
+
inputs=[test_image],
|
| 213 |
+
outputs=[output_text]
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
submit_btn.click(
|
| 218 |
+
fn=process_images,
|
| 219 |
+
inputs=[export_output],
|
| 220 |
+
outputs=[download_button_tflite]
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
# Add custom CSS for smaller gallery images
|
| 224 |
+
demo.load(js="""
|
| 225 |
+
function() {
|
| 226 |
+
const style = document.createElement('style');
|
| 227 |
+
style.textContent = `
|
| 228 |
+
.small-gallery img {
|
| 229 |
+
max-height: 150px !important;
|
| 230 |
+
width: auto !important;
|
| 231 |
+
object-fit: contain !important;
|
| 232 |
+
}
|
| 233 |
+
.small-gallery .grid-container {
|
| 234 |
+
gap: 10px !important;
|
| 235 |
+
}
|
| 236 |
+
`;
|
| 237 |
+
document.head.appendChild(style);
|
| 238 |
+
}
|
| 239 |
+
""")
|
| 240 |
+
|
| 241 |
+
# Functionality Connections
|
| 242 |
+
# Add both button click and Enter key press handlers
|
| 243 |
+
# add_tag_category_btn.click(
|
| 244 |
+
# add_tag_category,
|
| 245 |
+
# tag_category_input,
|
| 246 |
+
# [tag_category_status, image_upload, tag_category_input]
|
| 247 |
+
# ).then(
|
| 248 |
+
# get_tag_category_choices,
|
| 249 |
+
# None,
|
| 250 |
+
# tag_category_selector
|
| 251 |
+
# )
|
| 252 |
+
|
| 253 |
+
# Add Enter key press handler
|
| 254 |
+
tag_category_input.submit(
|
| 255 |
+
add_tag_category,
|
| 256 |
+
tag_category_input,
|
| 257 |
+
[tag_category_status, image_upload, tag_category_input]
|
| 258 |
+
).then(
|
| 259 |
+
get_tag_category_choices,
|
| 260 |
+
None,
|
| 261 |
+
tag_category_selector
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
tag_category_selector.change(
|
| 265 |
+
show_category_images,
|
| 266 |
+
tag_category_selector,
|
| 267 |
+
[image_gallery, image_upload]
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
upload_images_btn.click(
|
| 271 |
+
upload_images_for_tag,
|
| 272 |
+
[tag_category_selector, image_upload],
|
| 273 |
+
[tag_category_status, image_gallery, export_output]
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
clear_upload_btn.click(
|
| 277 |
+
clear_uploaded_images,
|
| 278 |
+
[],
|
| 279 |
+
[image_upload, image_gallery]
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
# export_btn.click(export_tagged_images, None, export_output)
|
| 283 |
+
|
| 284 |
+
# Launch the app
|
| 285 |
+
demo.launch()
|