Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import re
|
| 4 |
+
import json
|
| 5 |
+
import transformers
|
| 6 |
+
import torch
|
| 7 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, Trainer
|
| 8 |
+
|
| 9 |
+
st.set_page_config(
|
| 10 |
+
page_title="Named Entity Recognition Wolof",
|
| 11 |
+
page_icon="📘"
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
def convert_df(df: pd.DataFrame):
|
| 15 |
+
return df.to_csv(index=False).encode('utf-8')
|
| 16 |
+
|
| 17 |
+
def convert_json(df: pd.DataFrame):
|
| 18 |
+
result = df.to_json(orient="index")
|
| 19 |
+
parsed = json.loads(result)
|
| 20 |
+
json_string = json.dumps(parsed)
|
| 21 |
+
return json_string
|
| 22 |
+
|
| 23 |
+
def load_model():
|
| 24 |
+
model = AutoModelForTokenClassification.from_pretrained("vonewman/wolof-finetuned-ner")
|
| 25 |
+
trainer = Trainer(model=model)
|
| 26 |
+
tokenizer = AutoTokenizer.from_pretrained("vonewman/wolof-finetuned-ner")
|
| 27 |
+
return trainer, model, tokenizer
|
| 28 |
+
|
| 29 |
+
def align_word_ids(texts):
|
| 30 |
+
trainer, model, tokenizer = load_model()
|
| 31 |
+
tokenized_inputs = tokenizer(texts, padding='max_length', max_length=218, truncation=True)
|
| 32 |
+
word_ids = tokenized_inputs.word_ids()
|
| 33 |
+
previous_word_idx = None
|
| 34 |
+
label_ids = []
|
| 35 |
+
for word_idx in word_ids:
|
| 36 |
+
if word_idx is None:
|
| 37 |
+
label_ids.append(-100)
|
| 38 |
+
elif word_idx != previous_word_idx:
|
| 39 |
+
try:
|
| 40 |
+
label_ids.append(1)
|
| 41 |
+
except:
|
| 42 |
+
label_ids.append(-100)
|
| 43 |
+
else:
|
| 44 |
+
try:
|
| 45 |
+
label_ids.append(1 if label_all_tokens else -100)
|
| 46 |
+
except:
|
| 47 |
+
label_ids.append(-100)
|
| 48 |
+
previous_word_idx = word_idx
|
| 49 |
+
return label_ids
|
| 50 |
+
|
| 51 |
+
def predict_ner_labels(model, tokenizer, sentence):
|
| 52 |
+
use_cuda = torch.cuda.is_available()
|
| 53 |
+
device = torch.device("cuda" if use_cuda else "cpu")
|
| 54 |
+
if use_cuda:
|
| 55 |
+
model = model.cuda()
|
| 56 |
+
text = tokenizer(sentence, padding='max_length', max_length=218, truncation=True, return_tensors="pt")
|
| 57 |
+
mask = text['attention_mask'].to(device)
|
| 58 |
+
input_id = text['input_ids'].to(device)
|
| 59 |
+
label_ids = torch.Tensor(align_word_ids(sentence)).unsqueeze(0).to(device)
|
| 60 |
+
logits = model(input_id, mask, None)
|
| 61 |
+
logits_clean = logits[0][label_ids != -100]
|
| 62 |
+
predictions = logits_clean.argmax(dim=1).tolist()
|
| 63 |
+
prediction_label = [id2tag[i] for i in predictions]
|
| 64 |
+
return prediction_label
|
| 65 |
+
|
| 66 |
+
id2tag = {0: 'O', 1: 'B-LOC', 2: 'B-PER', 3: 'I-PER', 4: 'B-ORG', 5: 'I-DATE', 6: 'B-DATE', 7: 'I-ORG', 8: 'I-LOC'}
|
| 67 |
+
|
| 68 |
+
def tag_sentence(text):
|
| 69 |
+
trainer, model, tokenizer = load_model()
|
| 70 |
+
predictions = predict_ner_labels(model, tokenizer, text)
|
| 71 |
+
# Créez un DataFrame avec les colonnes "words" et "tags"
|
| 72 |
+
df = pd.DataFrame({'words': text.split(), 'tags': predictions})
|
| 73 |
+
return df
|
| 74 |
+
|
| 75 |
+
st.title("📘 Named Entity Recognition Wolof")
|
| 76 |
+
|
| 77 |
+
with st.form(key='my_form'):
|
| 78 |
+
x1 = st.text_input(label='Enter a sentence:', max_chars=250)
|
| 79 |
+
submit_button = st.form_submit_button(label='🏷️ Create tags')
|
| 80 |
+
|
| 81 |
+
if submit_button:
|
| 82 |
+
if re.sub('\s+', '', x1) == '':
|
| 83 |
+
st.error('Please enter a non-empty sentence.')
|
| 84 |
+
elif re.match(r'\A\s*\w+\s*\Z', x1):
|
| 85 |
+
st.error("Please enter a sentence with at least one word")
|
| 86 |
+
else:
|
| 87 |
+
st.markdown("### Tagged Sentence")
|
| 88 |
+
st.header("")
|
| 89 |
+
results = tag_sentence(x1)
|
| 90 |
+
cs, c1, c2, c3, cLast = st.columns([0.75, 1.5, 1.5, 1.5, 0.75])
|
| 91 |
+
with c1:
|
| 92 |
+
csvbutton = st.download_button(label="📥 Download .csv", data=convert_df(results),
|
| 93 |
+
file_name="results.csv", mime='text/csv', key='csv')
|
| 94 |
+
with c2:
|
| 95 |
+
textbutton = st.download_button(label="📥 Download .txt", data=convert_df(results),
|
| 96 |
+
file_name="results.text", mime='text/plain', key='text')
|
| 97 |
+
with c3:
|
| 98 |
+
jsonbutton = st.download_button(label="📥 Download .json", data=convert_json(results),
|
| 99 |
+
file_name="results.json", mime='application/json', key='json')
|
| 100 |
+
st.header("")
|
| 101 |
+
c1, c2, c3 = st.columns([1, 3, 1])
|
| 102 |
+
with c2:
|
| 103 |
+
st.table(results[['words', 'tags']])
|
| 104 |
+
|
| 105 |
+
st.header("")
|
| 106 |
+
st.header("")
|
| 107 |
+
st.header("")
|
| 108 |
+
with st.expander("ℹ️ - About this app", expanded=True):
|
| 109 |
+
st.write(
|
| 110 |
+
"""
|
| 111 |
+
- The **Named Entity Recognition Wolof** app is a tool that performs named entity recognition in Wolof.
|
| 112 |
+
- The available entities are: *corporation*, *location*, *person*, and *date*.
|
| 113 |
+
- The app uses the [XLMRoberta model](https://huggingface.co/xlm-roberta-base), fine-tuned on the [masakhaNER](https://huggingface.co/datasets/masakhane/masakhaner2) dataset.
|
| 114 |
+
- The model uses the **byte-level BPE tokenizer**. Each sentence is first tokenized.
|
| 115 |
+
"""
|
| 116 |
+
)
|