Spaces:
Runtime error
Runtime error
| # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= | |
| from typing import Any, Dict, List, Optional, Union | |
| from camel.agents.chat_agent import ChatAgent | |
| from camel.messages import BaseMessage | |
| from camel.models import BaseModelBackend | |
| from camel.prompts import PromptTemplateGenerator, TextPrompt | |
| from camel.types import RoleType, TaskType | |
| from camel.utils import get_task_list | |
| # AgentOps decorator setting | |
| try: | |
| import os | |
| if os.getenv("AGENTOPS_API_KEY") is not None: | |
| from agentops import track_agent | |
| else: | |
| raise ImportError | |
| except (ImportError, AttributeError): | |
| from camel.utils import track_agent | |
| class TaskSpecifyAgent(ChatAgent): | |
| r"""An agent that specifies a given task prompt by prompting the user to | |
| provide more details. | |
| Attributes: | |
| DEFAULT_WORD_LIMIT (int): The default word limit for the task prompt. | |
| task_specify_prompt (TextPrompt): The prompt for specifying the task. | |
| Args: | |
| model (BaseModelBackend, optional): The model backend to use for | |
| generating responses. (default: :obj:`OpenAIModel` with | |
| `GPT_4O_MINI`) | |
| task_type (TaskType, optional): The type of task for which to generate | |
| a prompt. (default: :obj:`TaskType.AI_SOCIETY`) | |
| task_specify_prompt (Union[str, TextPrompt], optional): The prompt for | |
| specifying the task. (default: :obj:`None`) | |
| word_limit (int, optional): The word limit for the task prompt. | |
| (default: :obj:`50`) | |
| output_language (str, optional): The language to be output by the | |
| agent. (default: :obj:`None`) | |
| """ | |
| DEFAULT_WORD_LIMIT = 50 | |
| def __init__( | |
| self, | |
| model: Optional[BaseModelBackend] = None, | |
| task_type: TaskType = TaskType.AI_SOCIETY, | |
| task_specify_prompt: Optional[Union[str, TextPrompt]] = None, | |
| word_limit: int = DEFAULT_WORD_LIMIT, | |
| output_language: Optional[str] = None, | |
| ) -> None: | |
| self.task_specify_prompt: Union[str, TextPrompt] | |
| if task_specify_prompt is None: | |
| task_specify_prompt_template = ( | |
| PromptTemplateGenerator().get_task_specify_prompt(task_type) | |
| ) | |
| self.task_specify_prompt = task_specify_prompt_template.format( | |
| word_limit=word_limit | |
| ) | |
| else: | |
| self.task_specify_prompt = TextPrompt(task_specify_prompt) | |
| system_message = BaseMessage( | |
| role_name="Task Specifier", | |
| role_type=RoleType.ASSISTANT, | |
| meta_dict=None, | |
| content="You can make a task more specific.", | |
| ) | |
| super().__init__( | |
| system_message, | |
| model=model, | |
| output_language=output_language, | |
| ) | |
| def run( | |
| self, | |
| task_prompt: Union[str, TextPrompt], | |
| meta_dict: Optional[Dict[str, Any]] = None, | |
| ) -> TextPrompt: | |
| r"""Specify the given task prompt by providing more details. | |
| Args: | |
| task_prompt (Union[str, TextPrompt]): The original task | |
| prompt. | |
| meta_dict (Dict[str, Any], optional): A dictionary containing | |
| additional information to include in the prompt. | |
| (default: :obj:`None`) | |
| Returns: | |
| TextPrompt: The specified task prompt. | |
| """ | |
| self.reset() | |
| task_specify_prompt = self.task_specify_prompt.format(task=task_prompt) | |
| if meta_dict is not None: | |
| task_specify_prompt = task_specify_prompt.format(**meta_dict) | |
| task_msg = BaseMessage.make_user_message( | |
| role_name="Task Specifier", content=task_specify_prompt | |
| ) | |
| specifier_response = self.step(task_msg) | |
| if specifier_response.terminated: | |
| raise RuntimeError("Task specification failed.") | |
| if len(specifier_response.msgs) == 0: | |
| raise RuntimeError("Got no specification message.") | |
| specified_task_msg = specifier_response.msgs[0] | |
| return TextPrompt(specified_task_msg.content) | |
| class TaskPlannerAgent(ChatAgent): | |
| r"""An agent that helps divide a task into subtasks based on the input | |
| task prompt. | |
| Attributes: | |
| task_planner_prompt (TextPrompt): A prompt for the agent to divide | |
| the task into subtasks. | |
| Args: | |
| model (BaseModelBackend, optional): The model backend to use for | |
| generating responses. (default: :obj:`OpenAIModel` with | |
| `GPT_4O_MINI`) | |
| output_language (str, optional): The language to be output by the | |
| agent. (default: :obj:`None`) | |
| """ | |
| def __init__( | |
| self, | |
| model: Optional[BaseModelBackend] = None, | |
| output_language: Optional[str] = None, | |
| ) -> None: | |
| self.task_planner_prompt = TextPrompt( | |
| "Divide this task into subtasks: {task}. Be concise." | |
| ) | |
| system_message = BaseMessage( | |
| role_name="Task Planner", | |
| role_type=RoleType.ASSISTANT, | |
| meta_dict=None, | |
| content="You are a helpful task planner.", | |
| ) | |
| super().__init__( | |
| system_message, | |
| model=model, | |
| output_language=output_language, | |
| ) | |
| def run( | |
| self, | |
| task_prompt: Union[str, TextPrompt], | |
| ) -> TextPrompt: | |
| r"""Generate subtasks based on the input task prompt. | |
| Args: | |
| task_prompt (Union[str, TextPrompt]): The prompt for the task to | |
| be divided into subtasks. | |
| Returns: | |
| TextPrompt: A prompt for the subtasks generated by the agent. | |
| """ | |
| # TODO: Maybe include roles information. | |
| self.reset() | |
| task_planner_prompt = self.task_planner_prompt.format(task=task_prompt) | |
| task_msg = BaseMessage.make_user_message( | |
| role_name="Task Planner", content=task_planner_prompt | |
| ) | |
| task_response = self.step(task_msg) | |
| if task_response.terminated: | |
| raise RuntimeError("Task planning failed.") | |
| if len(task_response.msgs) == 0: | |
| raise RuntimeError("Got no task planning message.") | |
| sub_tasks_msg = task_response.msgs[0] | |
| return TextPrompt(sub_tasks_msg.content) | |
| class TaskCreationAgent(ChatAgent): | |
| r"""An agent that helps create new tasks based on the objective | |
| and last completed task. Compared to :obj:`TaskPlannerAgent`, | |
| it's still a task planner, but it has more context information | |
| like last task and incomplete task list. Modified from | |
| `BabyAGI <https://github.com/yoheinakajima/babyagi>`_. | |
| Attributes: | |
| task_creation_prompt (TextPrompt): A prompt for the agent to | |
| create new tasks. | |
| Args: | |
| role_name (str): The role name of the Agent to create the task. | |
| objective (Union[str, TextPrompt]): The objective of the Agent to | |
| perform the task. | |
| model (BaseModelBackend, optional): The LLM backend to use for | |
| generating responses. (default: :obj:`OpenAIModel` with | |
| `GPT_4O_MINI`) | |
| output_language (str, optional): The language to be output by the | |
| agent. (default: :obj:`None`) | |
| message_window_size (int, optional): The maximum number of previous | |
| messages to include in the context window. If `None`, no windowing | |
| is performed. (default: :obj:`None`) | |
| max_task_num (int, optional): The maximum number of planned | |
| tasks in one round. (default: :obj:3) | |
| """ | |
| def __init__( | |
| self, | |
| role_name: str, | |
| objective: Union[str, TextPrompt], | |
| model: Optional[BaseModelBackend] = None, | |
| output_language: Optional[str] = None, | |
| message_window_size: Optional[int] = None, | |
| max_task_num: Optional[int] = 3, | |
| ) -> None: | |
| task_creation_prompt = TextPrompt( | |
| """Create new a task with the following objective: {objective}. | |
| Never forget you are a Task Creator of {role_name}. | |
| You must instruct me based on my expertise and your needs to solve the task. | |
| You should consider past solved tasks and in-progress tasks: {task_list}. | |
| The new created tasks must not overlap with these past tasks. | |
| The result must be a numbered list in the format: | |
| #. First Task | |
| #. Second Task | |
| #. Third Task | |
| You can only give me up to {max_task_num} tasks at a time. \ | |
| Each task should be concise, concrete and doable for a {role_name}. | |
| You should make task plan and not ask me questions. | |
| If you think no new tasks are needed right now, write "No tasks to add." | |
| Now start to give me new tasks one by one. No more than three tasks. | |
| Be concrete. | |
| """ | |
| ) | |
| self.task_creation_prompt = task_creation_prompt.format( | |
| objective=objective, role_name=role_name, max_task_num=max_task_num | |
| ) | |
| self.objective = objective | |
| system_message = BaseMessage( | |
| role_name="Task Creator", | |
| role_type=RoleType.ASSISTANT, | |
| meta_dict=None, | |
| content="You are a helpful task creator.", | |
| ) | |
| super().__init__( | |
| system_message, | |
| model=model, | |
| output_language=output_language, | |
| message_window_size=message_window_size, | |
| ) | |
| def run( | |
| self, | |
| task_list: List[str], | |
| ) -> List[str]: | |
| r"""Generate subtasks based on the previous task results and | |
| incomplete task list. | |
| Args: | |
| task_list (List[str]): The completed or in-progress | |
| tasks which should not overlap with new created tasks. | |
| Returns: | |
| List[str]: The new task list generated by the Agent. | |
| """ | |
| if len(task_list) > 0: | |
| task_creation_prompt = self.task_creation_prompt.format( | |
| task_list=task_list | |
| ) | |
| else: | |
| task_creation_prompt = self.task_creation_prompt.format( | |
| task_list="" | |
| ) | |
| task_msg = BaseMessage.make_user_message( | |
| role_name="Task Creator", content=task_creation_prompt | |
| ) | |
| task_response = self.step(task_msg) | |
| if task_response.terminated: | |
| raise RuntimeError("Task creation failed.") | |
| if len(task_response.msgs) == 0: | |
| raise RuntimeError("Got no task creation message.") | |
| sub_tasks_msg = task_response.msgs[0] | |
| return get_task_list(sub_tasks_msg.content) | |
| class TaskPrioritizationAgent(ChatAgent): | |
| r"""An agent that helps re-prioritize the task list and | |
| returns numbered prioritized list. Modified from | |
| `BabyAGI <https://github.com/yoheinakajima/babyagi>`_. | |
| Attributes: | |
| task_prioritization_prompt (TextPrompt): A prompt for the agent to | |
| prioritize tasks. | |
| Args: | |
| objective (Union[str, TextPrompt]): The objective of the Agent to | |
| perform the task. | |
| model (BaseModelBackend, optional): The LLM backend to use for | |
| generating responses. (default: :obj:`OpenAIModel` with | |
| `GPT_4O_MINI`) | |
| output_language (str, optional): The language to be output by the | |
| agent. (default: :obj:`None`) | |
| message_window_size (int, optional): The maximum number of previous | |
| messages to include in the context window. If `None`, no windowing | |
| is performed. (default: :obj:`None`) | |
| """ | |
| def __init__( | |
| self, | |
| objective: Union[str, TextPrompt], | |
| model: Optional[BaseModelBackend] = None, | |
| output_language: Optional[str] = None, | |
| message_window_size: Optional[int] = None, | |
| ) -> None: | |
| task_prioritization_prompt = TextPrompt( | |
| """Prioritize the following tasks : {task_list}. | |
| Consider the ultimate objective of you: {objective}. | |
| Tasks should be sorted from highest to lowest priority, where higher-priority \ | |
| tasks are those that act as pre-requisites or are more essential for meeting \ | |
| the objective. Return one task per line in your response. | |
| Do not remove or modify any tasks. | |
| The result must be a numbered list in the format: | |
| #. First task | |
| #. Second task | |
| The entries must be consecutively numbered, starting with 1. | |
| The number of each entry must be followed by a period. | |
| Do not include any headers before your ranked list or follow your list \ | |
| with any other output.""" | |
| ) | |
| self.task_prioritization_prompt = task_prioritization_prompt.format( | |
| objective=objective | |
| ) | |
| self.objective = objective | |
| system_message = BaseMessage( | |
| role_name="Task Prioritizer", | |
| role_type=RoleType.ASSISTANT, | |
| meta_dict=None, | |
| content="You are a helpful task prioritizer.", | |
| ) | |
| super().__init__( | |
| system_message, | |
| model=model, | |
| output_language=output_language, | |
| message_window_size=message_window_size, | |
| ) | |
| def run( | |
| self, | |
| task_list: List[str], | |
| ) -> List[str]: | |
| r"""Prioritize the task list given the agent objective. | |
| Args: | |
| task_list (List[str]): The unprioritized tasks of agent. | |
| Returns: | |
| List[str]: The new prioritized task list generated by the Agent. | |
| """ | |
| task_prioritization_prompt = self.task_prioritization_prompt.format( | |
| task_list=task_list | |
| ) | |
| task_msg = BaseMessage.make_user_message( | |
| role_name="Task Prioritizer", content=task_prioritization_prompt | |
| ) | |
| task_response = self.step(task_msg) | |
| if task_response.terminated: | |
| raise RuntimeError("Task prioritization failed.") | |
| if len(task_response.msgs) == 0: | |
| raise RuntimeError("Got no task prioritization message.") | |
| sub_tasks_msg = task_response.msgs[0] | |
| return get_task_list(sub_tasks_msg.content) | |