Spaces:
Configuration error
Configuration error
load_model
Browse files
app.py
CHANGED
|
@@ -11,10 +11,14 @@ import random
|
|
| 11 |
import spaces
|
| 12 |
|
| 13 |
pipe = None
|
| 14 |
-
device =
|
|
|
|
| 15 |
|
| 16 |
def load_model():
|
| 17 |
-
global device
|
|
|
|
|
|
|
|
|
|
| 18 |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
| 19 |
"yeq6x/animagine_position_map",
|
| 20 |
controlnet=ControlNetModel.from_pretrained("yeq6x/Image2PositionColor_v3"),
|
|
@@ -23,8 +27,6 @@ def load_model():
|
|
| 23 |
|
| 24 |
return pipe
|
| 25 |
|
| 26 |
-
pipe = load_model()
|
| 27 |
-
|
| 28 |
def convert_pil_to_opencv(pil_image):
|
| 29 |
return np.array(pil_image)
|
| 30 |
|
|
@@ -139,9 +141,8 @@ def outpaint_image(image):
|
|
| 139 |
|
| 140 |
@spaces.GPU
|
| 141 |
def predict_image(cond_image, prompt, negative_prompt):
|
| 142 |
-
print("
|
| 143 |
global pipe
|
| 144 |
-
print("Processing...")
|
| 145 |
generator = torch.Generator()
|
| 146 |
generator.manual_seed(random.randint(0, 2147483647))
|
| 147 |
image = pipe(
|
|
@@ -160,6 +161,8 @@ def predict_image(cond_image, prompt, negative_prompt):
|
|
| 160 |
|
| 161 |
return image
|
| 162 |
|
|
|
|
|
|
|
| 163 |
# Gradioアプリケーション
|
| 164 |
with gr.Blocks() as demo:
|
| 165 |
gr.Markdown("## Position Map Visualizer")
|
|
|
|
| 11 |
import spaces
|
| 12 |
|
| 13 |
pipe = None
|
| 14 |
+
device = None
|
| 15 |
+
torch_dtype = None
|
| 16 |
|
| 17 |
def load_model():
|
| 18 |
+
global pipe, device, torch_dtype
|
| 19 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
+
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
| 21 |
+
|
| 22 |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
| 23 |
"yeq6x/animagine_position_map",
|
| 24 |
controlnet=ControlNetModel.from_pretrained("yeq6x/Image2PositionColor_v3"),
|
|
|
|
| 27 |
|
| 28 |
return pipe
|
| 29 |
|
|
|
|
|
|
|
| 30 |
def convert_pil_to_opencv(pil_image):
|
| 31 |
return np.array(pil_image)
|
| 32 |
|
|
|
|
| 141 |
|
| 142 |
@spaces.GPU
|
| 143 |
def predict_image(cond_image, prompt, negative_prompt):
|
| 144 |
+
print("predict position map")
|
| 145 |
global pipe
|
|
|
|
| 146 |
generator = torch.Generator()
|
| 147 |
generator.manual_seed(random.randint(0, 2147483647))
|
| 148 |
image = pipe(
|
|
|
|
| 161 |
|
| 162 |
return image
|
| 163 |
|
| 164 |
+
load_model()
|
| 165 |
+
|
| 166 |
# Gradioアプリケーション
|
| 167 |
with gr.Blocks() as demo:
|
| 168 |
gr.Markdown("## Position Map Visualizer")
|