Spaces:
Sleeping
Sleeping
File size: 14,344 Bytes
7a08279 3d38798 ebd335b 7a08279 682c78a 7a08279 47cd2df 7a08279 47cd2df 7a08279 47cd2df 80dccab 7a08279 47cd2df 832e4aa 47cd2df 7a08279 47cd2df 80dccab 7a08279 47cd2df 7a08279 3203259 7a08279 47cd2df 7a08279 0e01f25 7a08279 47cd2df 7a08279 47cd2df 09c8f00 7a08279 47cd2df ff803bd 7a08279 47cd2df 7a08279 80dccab 7a08279 80dccab 7a08279 47cd2df 80dccab 7a08279 80dccab 7a08279 47cd2df 80dccab 7a08279 47cd2df 7a08279 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import pandas as pd
from rapidfuzz import process, fuzz
# Data Loading ---------------------------------------------------------------
try:
knowledge_base = pd.read_csv("data/mcp_knowledge_base.csv")
knowledge_base_latest = pd.read_csv("data/mcp_knowledge_base_latest.csv")
ALL_PROD_NAMES = knowledge_base.prod_name.values
ALL_ARTIST_NAMES = knowledge_base.artist.values
ALL_SET_NAMES = knowledge_base.set_name.values
except Exception as e:
# Handle data loading error
print(f"ERROR loading data for tools: {e}")
knowledge_base = pd.DataFrame()
knowledge_base_latest = pd.DataFrame()
ALL_PROD_NAMES = []
ALL_ARTIST_NAMES = []
ALL_SET_NAMES = []
# ---------------------------------------------------------------------------
class PokemonAdvisorTools():
"""
A central class to house all data retrieval and analysis tools
for the cAsh MCP Robo-Advisor.
"""
knowledge_base = knowledge_base
knowledge_base_latest = knowledge_base_latest
ALL_PROD_NAMES = ALL_PROD_NAMES
ALL_ARTIST_NAMES = ALL_ARTIST_NAMES
ALL_SET_NAMES = ALL_SET_NAMES
def list_card_names(self, name_query: str) -> list:
"""
Retrieves a list of card names from the database.
Use this tool when the user says the card you provided is not what they are looking for.
Args:
name_query (str): The name of the card to search for (e.g., "Umbreon GX").
The tool uses fuzzy matching, so exact spelling is not required.
Returns:
list: A list of 'prod_name's that matches the 'name_query'
"""
if not self.ALL_PROD_NAMES.any(): return {"error": "Data not loaded."}
prod_names_match = process.extract(name_query, self.ALL_PROD_NAMES, scorer=fuzz.WRatio, limit=5)
return [name[0].replace("_", " ") for name in prod_names_match]
def get_card_info(self, name_query: str) -> dict:
"""
Retrieves comprehensive financial and metadata for a specific Pokemon card.
Use this tool when you need to know the current price, 6-month trend, or
general details of a card.
Args:
name_query (str): The name of the card to search for (e.g., "Charizard VMAX").
The tool uses fuzzy matching, so exact spelling is not required.
Returns:
dict: A dictionary containing 'used_price', 'graded_price', 'trend_6',
and other key metrics. Returns an 'error' key if not found.
"""
if not self.ALL_PROD_NAMES.any(): return {"error": "Data not loaded."}
match = process.extractOne(name_query, self.ALL_PROD_NAMES, scorer=fuzz.WRatio)
if not match or match[1] < 70:
return {"error": f"Card '{name_query}' not found. Please check spelling."}
prod_name = match[0]
card_df = self.knowledge_base_latest[self.knowledge_base_latest["prod_name"] == prod_name]
if card_df.empty:
return {"error": f"Data missing for '{prod_name}'."}
return card_df.to_dict(orient="records")[0]
def find_grading_opportunities(self, max_price: float = 100, min_profit: float = 20) -> list:
"""
Scans the market for 'Arbitrage' opportunities where the gap between the Raw
and Graded price is largest.
Use this tool when the user asks for "buying recommendations," "profitable cards,"
or "what should I grade?".
Args:
max_price (float): The maximum price willing to pay for the raw card. Default is 100.
min_profit (float): The minimum profit (Graded Price - Raw Price - Fees) desired. Default is 20.
Returns:
list: A list of dictionaries representing the top 10 most profitable opportunities,
sorted by 'grade_profit' descending.
"""
profitable_grades = self.knowledge_base_latest[self.knowledge_base_latest["is_grade_profitable"] == True]
profitable_grades = profitable_grades[profitable_grades["used_price"] <= max_price]
min_profit_grades = profitable_grades[profitable_grades["grade_profit"] >= min_profit]
min_profit_grades = min_profit_grades.sort_values(
by="grade_profit", ascending=False
).head(10)
output_columns = [
"prod_name",
"used_price",
"graded_price",
"grade_profit",
"grade_profit_ratio",
"is_popular_pokemon",
"artist"
]
min_profit_grades = min_profit_grades[output_columns]
return min_profit_grades.to_dict(orient="records")
def get_market_movers(self, sort_by: str ="uptrend", interval: int = 6, market_type: str ="used") -> list:
"""
Identifies cards with the strongest positive or negative price trends over a sustained period (3 or 6 months).
Use this tool when users ask about "long-term growth," "steady winners," "market crashers,"
or "which cards are consistently losing value."
NOTE: Use this for TRENDS. Use `get_recent_price_spikes` for sudden, short-term JUMPS.
Args:
sort_by (str): "uptrend" to find biggest gainers, "downtrend" to find biggest losers. Default is "uptrend".
interval (int): The time period in months to analyze (3 or 6). Default is 6.
market_type (str): "used" (Raw) or "graded" (Slab). Default is "used".
Returns:
list: A list of the top 10 cards matching the trend criteria, including their percentage change.
"""
market_move_data = self.knowledge_base_latest.sort(by=f"{market_type}_trend_{interval}", ascending=(not sort_by=="uptrend")).head(10)
output_columns = ["prod_name", "used_price", "graded_price"]
market_move_data = market_move_data[output_columns]
return market_move_data.to_dict(orient="records")
def _calculate_risk_label(self, vol, low_threshold, high_threshold):
"""Helper function for volatility assessment tool."""
if vol < low_threshold:
return "π’ Low Volatility (Stable/Blue Chip)"
elif vol > high_threshold:
return "π΄ High Volatility (Speculative)"
else:
return "π‘ Medium Volatility"
def assess_risk_volatility(self, card_name: str, interval: int = 6) -> dict:
"""
Calculates the risk profile of a card based on its price volatility over time.
ALWAYS use this tool before recommending an investment.
Args:
card_name (str): The name of the card to analyze.
interval (int): The time period in months to analyze (must be 3 or 6). Default is 6.
Returns:
dict: Contains 'volatility_assessment' (Low/Medium/High) and raw metrics.
"""
try:
interval = int(interval)
except ValueError:
return {"error": "Invalid 'interval' value. Must be 3 or 6."}
card_info = self.get_card_info(card_name)
if not card_info:
return {"error": f"Card not found for query: {card_name}"}
if interval not in [3, 6]:
return {"error": f"Invalid interval requested: {interval}. Only 3 or 6 months are supported."}
if interval == 3:
# 3-Month Thresholds
used_vol_low_threshold = 0.533
used_vol_high_threshold = 4.969
graded_vol_low_threshold = 0.982
graded_vol_high_threshold = 4.367
used_volatility = card_info.get("used_vol_3")
graded_volatility = card_info.get("graded_vol_3")
elif interval == 6:
# 6-Month Threshold
used_vol_low_threshold = 0.785
used_vol_high_threshold = 9.092
graded_vol_low_threshold = 2.250
graded_vol_high_threshold = 11.905
used_volatility = card_info.get("used_vol_6")
graded_volatility = card_info.get("graded_vol_6")
if used_volatility is None or graded_volatility is None:
return {"error": f"Volatility data missing for {card_name} at {interval} months. Check if card exists in the full knowledge base."}
return {
f"used_volatility": used_volatility,
f"graded_volatility": graded_volatility,
f"used_volatility_assesment_{interval}_months": self._calculate_risk_label(used_volatility, used_vol_low_threshold, used_vol_high_threshold),
f"graded_volatility_assesment_{interval}_months": self._calculate_risk_label(graded_volatility, graded_vol_low_threshold, graded_vol_high_threshold),
}
def get_roi_metrics(self, card_name: str) -> dict:
"""
Retrieves the historical Return on Investment (ROI) percentages.
Use this tool to show how a card has performed in the past (e.g., "Is it going up?").
Args:
card_name (str): The name of the card.
Returns:
dict: Returns 3-month and 6-month ROI percentages for both Used and Graded conditions.
"""
card_info = self.get_card_info(card_name)
if not card_info:
return {"error": f"Card not found for query: {card_name}. Cannot calculate ROI."}
return {
"used_price": card_info.get("used_price"),
"used_return_3_months": card_info.get("used_return_3"),
"used_return_6_months": card_info.get("used_return_6"),
"graded_return_3_months": card_info.get("graded_return_3"),
"graded_return_6_months": card_info.get("graded_return_6")
}
def get_recent_price_spikes(self, market_type: str = "used") -> list:
"""
Identifies cards that have recently experienced a significant price jump ("Spike").
Use this tool when users ask about "market movers," "hype," or "what is popping right now."
Args:
market_type (str): Either "used" (Raw) or "graded" (Slab). Default is "used".
Returns:
list: Top 20 cards with the highest recent positive price change.
"""
market_type = market_type.lower().strip()
if market_type == "used":
jump_data = self.knowledge_base_latest[self.knowledge_base_latest["used_jump_up"] == True]
jump_data = jump_data.sort_values("used_price", ascending=False).head(20)
output_columns = ["prod_name", "set_name", "used_price"]
return jump_data[output_columns].to_dict(orient="records")
elif market_type == "graded":
jump_data = self.knowledge_base_latest[self.knowledge_base_latest["graded_jump_up"] == True]
jump_data = jump_data.sort_values("graded_price", ascending=False).head(20)
output_columns = ["prod_name", "set_name", "graded_price"]
return jump_data[output_columns].to_dict(orient="records")
# --- Error Handling ---
else:
return {"error": f"Invalid market_type '{market_type}'. Please use 'used' or 'graded'."}
def find_cards_by_artist(self, artist_name: str) -> dict:
"""
Finds profitable or popular cards illustrated by a specific artist.
Use this for "Niche" requests or when users ask about art styles.
Args:
artist_name (str): The artist's name limited to ['Akira Egawa', 'Shinji Kanda', 'HYOGONOSUKE', 'sowsow', 'Tomokazu Komiya'].
Returns:
dict: A list of cards by that artist, sorted by profitability.
"""
artist_match = process.extractOne(artist_name, self.ALL_ARTIST_NAMES, scorer=fuzz.WRatio)
if not artist_match or artist_match[1] < 75:
return {"error": f"Artist '{artist_name}' not found or matched with low confidence."}
artist_name_match = artist_match[0]
artist_card_data = self.knowledge_base_latest[self.knowledge_base_latest["artist"] == artist_name_match]
profitable_cards = artist_card_data[artist_card_data["is_grade_profitable"] == True]
profitable_cards = profitable_cards.sort_values(by="grade_profit", ascending=False).head(20)
output_columns = [
"prod_name",
"set_name",
"used_price",
"grade_profit",
"grade_profit_ratio"
]
# --- Error Handling ---
if profitable_cards.empty:
return {"result": f"No currently profitable cards found by artist {artist_name_match} in the latest data."}
return {
"artist": artist_name_match,
"cards": profitable_cards[output_columns].to_dict(orient="records")
}
def analyze_set_performance(self, set_name: str) -> dict:
"""
Aggregates data to analyze the overall health and sentiment of a specific Card Set.
Use this when users ask about broad trends like "How is Evolving Skies doing?"
rather than specific cards.
Args:
set_query (str): The name of the set (e.g., "Sun & Moon"). Fuzzy matched.
Returns:
dict: Average trends, average profitability, and the set's 'Chase Card'.
"""
set_name_match = process.extractOne(set_name.lower(), self.ALL_SET_NAMES, scorer=fuzz.WRatio)[0]
set_card_data = self.knowledge_base_latest[self.knowledge_base_latest["set_name"] == set_name_match]
total_cards = len(set_card_data)
avg_trend_6 = set_card_data["used_trend_6"].mean()
avg_grade_profit = set_card_data["grade_profit"].mean()
chase_card_row = set_card_data.sort_values('used_price', ascending=False).iloc[0]
return {
"set_name": set_name_match.replace("-", " "),
"total_cards_tracked": total_cards,
"market_sentiment_6mo": f"{avg_trend_6:.2f}%",
"avg_grading_profit": f"${avg_grade_profit:.2f}",
"chase_card": chase_card_row['prod_name'],
"chase_card_price": chase_card_row['used_price']
}
|