suayptalha commited on
Commit
9b5ef13
·
verified ·
1 Parent(s): df88ec4

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
chat_template.jinja ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {{ bos_token }}{% for message in messages %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '
2
+ ' + message['content'] | trim + '<end_of_turn>
3
+ ' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model
4
+ '}}{% endif %}
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Gemma2MoeForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "attn_logit_soft_capping": 50.0,
8
+ "auto_map": {
9
+ "AutoConfig": "suayptalha/turkish-gemmoe2-t1-base--configuration_gemma2moe.Gemma2MoeConfig",
10
+ "AutoModelForCausalLM": "suayptalha/turkish-gemmoe2-t1-base--modeling_gemma2moe.Gemma2MoeForCausalLM"
11
+ },
12
+ "bos_token_id": 2,
13
+ "dtype": "bfloat16",
14
+ "eos_token_id": 1,
15
+ "head_dim": 256,
16
+ "hidden_act": "gelu_pytorch_tanh",
17
+ "hidden_size": 3584,
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 14336,
20
+ "logit_soft_capping": 30.0,
21
+ "max_position_embeddings": 8192,
22
+ "model_type": "gemma2moe",
23
+ "num_attention_heads": 16,
24
+ "num_experts_per_tok": 2,
25
+ "num_hidden_layers": 42,
26
+ "num_key_value_heads": 8,
27
+ "num_local_experts": 3,
28
+ "output_router_logits": false,
29
+ "pad_token_id": 0,
30
+ "path": "suayptalha/turkish-gemmoe2-t1-base",
31
+ "query_pre_attn_scalar": 256,
32
+ "rms_norm_eps": 1e-06,
33
+ "rope_theta": 10000.0,
34
+ "router_aux_loss_coef": 0.001,
35
+ "router_jitter_noise": 0.0,
36
+ "sliding_window": 4096,
37
+ "transformers_version": "4.56.0",
38
+ "use_cache": true,
39
+ "vocab_size": 256000
40
+ }
configuration_gemma2moe.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The HuggingFace Inc. team and Gemma2MoE Contributors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Gemma2MoE model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+ class Gemma2MoeConfig(PretrainedConfig):
23
+ r"""
24
+ This is the configuration class to store the configuration of a [`Gemma2MoeModel`]. It is used to instantiate an Gemma2MoE
25
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
26
+ defaults will yield a similar configuration to that of the Gemma-2-9b but with MoE capabilities.
27
+
28
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
29
+ documentation from [`PretrainedConfig`] for more information.
30
+ """
31
+ model_type = "gemma2moe"
32
+ keys_to_ignore_at_inference = ["past_key_values"]
33
+
34
+ def __init__(
35
+ self,
36
+ vocab_size=256000,
37
+ hidden_size=3584,
38
+ intermediate_size=14336,
39
+ num_hidden_layers=42,
40
+ num_attention_heads=16,
41
+ num_key_value_heads=8,
42
+ head_dim=256,
43
+ hidden_act="gelu_pytorch_tanh",
44
+ max_position_embeddings=8192,
45
+ initializer_range=0.02,
46
+ rms_norm_eps=1e-6,
47
+ use_cache=True,
48
+ pad_token_id=0,
49
+ eos_token_id=1,
50
+ bos_token_id=2,
51
+ tie_word_embeddings=True,
52
+ rope_theta=10000.0,
53
+ attention_bias=False,
54
+ attention_dropout=0.0,
55
+
56
+ # Gemma 2 Specific Args
57
+ query_pre_attn_scalar=224, # 1/sqrt(head_dim) yerine Gemma2'ye özel scaling (genelde hidden_size temelli)
58
+ sliding_window=4096, # Sliding Window Attention window size
59
+ logit_soft_capping=30.0, # Final logit soft capping
60
+ attn_logit_soft_capping=50.0, # Attention scores soft capping
61
+
62
+ # MoE Arguments
63
+ num_experts_per_tok=2,
64
+ num_local_experts=8,
65
+ router_aux_loss_coef=0.001,
66
+ output_router_logits=False,
67
+ router_jitter_noise=0.0, # Opsiyonel: Router stabilitesi için jitter
68
+ **kwargs,
69
+ ):
70
+ self.vocab_size = vocab_size
71
+ self.max_position_embeddings = max_position_embeddings
72
+ self.hidden_size = hidden_size
73
+ self.intermediate_size = intermediate_size
74
+ self.num_hidden_layers = num_hidden_layers
75
+ self.num_attention_heads = num_attention_heads
76
+
77
+ # Grouped Query Attention (GQA) kontrolü
78
+ if num_key_value_heads is None:
79
+ num_key_value_heads = num_attention_heads
80
+ self.num_key_value_heads = num_key_value_heads
81
+
82
+ self.head_dim = head_dim
83
+ self.hidden_act = hidden_act
84
+ self.initializer_range = initializer_range
85
+ self.rms_norm_eps = rms_norm_eps
86
+ self.use_cache = use_cache
87
+ self.rope_theta = rope_theta
88
+ self.attention_bias = attention_bias
89
+ self.attention_dropout = attention_dropout
90
+
91
+ # Gemma 2 Specifics
92
+ self.query_pre_attn_scalar = query_pre_attn_scalar
93
+ self.sliding_window = sliding_window
94
+ self.logit_soft_capping = logit_soft_capping
95
+ self.attn_logit_soft_capping = attn_logit_soft_capping
96
+
97
+ # MoE Specifics
98
+ self.num_experts_per_tok = num_experts_per_tok
99
+ self.num_local_experts = num_local_experts
100
+ self.router_aux_loss_coef = router_aux_loss_coef
101
+ self.output_router_logits = output_router_logits
102
+ self.router_jitter_noise = router_jitter_noise
103
+
104
+ super().__init__(
105
+ pad_token_id=pad_token_id,
106
+ bos_token_id=bos_token_id,
107
+ eos_token_id=eos_token_id,
108
+ tie_word_embeddings=tie_word_embeddings,
109
+ **kwargs,
110
+ )
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 2,
4
+ "eos_token_id": 1,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.56.0"
7
+ }
model-00001-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1458267106e3e74e4271437e790699f480e47fa822429d5d5ea9aa0c7920f5a
3
+ size 4962041280
model-00002-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aca5cdb17ec10599608bc342de0bd93a2d90e1ac5f64914079b7c1f2c4a3ddcb
3
+ size 4976781976
model-00003-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef271ea9dfdeb64b15f0a0f7a10d4be0dda524838b9d9ece9fad0ab70e01e17a
3
+ size 4962094760
model-00004-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1984189ecc983997d2e62317039b29ac3c91c6cfae5437e47c2084581603c51c
3
+ size 4962123960
model-00005-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de0a692c6b4c4c3d7c3886141a3b0a80a4cccb224bb530c4d7d8a048c7b8d7c6
3
+ size 4962123960
model-00006-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4eb0b93d14004a42572536b94f6e338705136a2230da60664f3f6b82a30d49ed
3
+ size 4962123960
model-00007-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f89363a36e54457acf5072084e568575762b184e7365773cced52ab50b3ad8d
3
+ size 4962123960
model-00008-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75c497dd8b0f3057f51838011fcec114a1157443260f55025bcf354d27e1318d
3
+ size 4962123960
model-00009-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:380abb7b99f0065222ac3d120c35c58230674aef25027274acd2a733d04ec6c3
3
+ size 4668507560
model.safetensors.index.json ADDED
@@ -0,0 +1,766 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 22189974016,
4
+ "total_size": 44379948032
5
+ },
6
+ "weight_map": {
7
+ "model.embed_tokens.weight": "model-00001-of-00009.safetensors",
8
+ "model.layers.0.block_sparse_moe.experts.0.down_proj.weight": "model-00001-of-00009.safetensors",
9
+ "model.layers.0.block_sparse_moe.experts.0.gate_proj.weight": "model-00001-of-00009.safetensors",
10
+ "model.layers.0.block_sparse_moe.experts.0.up_proj.weight": "model-00001-of-00009.safetensors",
11
+ "model.layers.0.block_sparse_moe.experts.1.down_proj.weight": "model-00001-of-00009.safetensors",
12
+ "model.layers.0.block_sparse_moe.experts.1.gate_proj.weight": "model-00001-of-00009.safetensors",
13
+ "model.layers.0.block_sparse_moe.experts.1.up_proj.weight": "model-00001-of-00009.safetensors",
14
+ "model.layers.0.block_sparse_moe.experts.2.down_proj.weight": "model-00001-of-00009.safetensors",
15
+ "model.layers.0.block_sparse_moe.experts.2.gate_proj.weight": "model-00001-of-00009.safetensors",
16
+ "model.layers.0.block_sparse_moe.experts.2.up_proj.weight": "model-00001-of-00009.safetensors",
17
+ "model.layers.0.block_sparse_moe.gate.weight": "model-00001-of-00009.safetensors",
18
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00009.safetensors",
19
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
20
+ "model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00009.safetensors",
21
+ "model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00009.safetensors",
22
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
23
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
24
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
25
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
26
+ "model.layers.1.block_sparse_moe.experts.0.down_proj.weight": "model-00001-of-00009.safetensors",
27
+ "model.layers.1.block_sparse_moe.experts.0.gate_proj.weight": "model-00001-of-00009.safetensors",
28
+ "model.layers.1.block_sparse_moe.experts.0.up_proj.weight": "model-00001-of-00009.safetensors",
29
+ "model.layers.1.block_sparse_moe.experts.1.down_proj.weight": "model-00001-of-00009.safetensors",
30
+ "model.layers.1.block_sparse_moe.experts.1.gate_proj.weight": "model-00001-of-00009.safetensors",
31
+ "model.layers.1.block_sparse_moe.experts.1.up_proj.weight": "model-00001-of-00009.safetensors",
32
+ "model.layers.1.block_sparse_moe.experts.2.down_proj.weight": "model-00001-of-00009.safetensors",
33
+ "model.layers.1.block_sparse_moe.experts.2.gate_proj.weight": "model-00001-of-00009.safetensors",
34
+ "model.layers.1.block_sparse_moe.experts.2.up_proj.weight": "model-00001-of-00009.safetensors",
35
+ "model.layers.1.block_sparse_moe.gate.weight": "model-00001-of-00009.safetensors",
36
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00009.safetensors",
37
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
38
+ "model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00009.safetensors",
39
+ "model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00009.safetensors",
40
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
41
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
42
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
43
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
44
+ "model.layers.10.block_sparse_moe.experts.0.down_proj.weight": "model-00003-of-00009.safetensors",
45
+ "model.layers.10.block_sparse_moe.experts.0.gate_proj.weight": "model-00003-of-00009.safetensors",
46
+ "model.layers.10.block_sparse_moe.experts.0.up_proj.weight": "model-00003-of-00009.safetensors",
47
+ "model.layers.10.block_sparse_moe.experts.1.down_proj.weight": "model-00003-of-00009.safetensors",
48
+ "model.layers.10.block_sparse_moe.experts.1.gate_proj.weight": "model-00003-of-00009.safetensors",
49
+ "model.layers.10.block_sparse_moe.experts.1.up_proj.weight": "model-00003-of-00009.safetensors",
50
+ "model.layers.10.block_sparse_moe.experts.2.down_proj.weight": "model-00003-of-00009.safetensors",
51
+ "model.layers.10.block_sparse_moe.experts.2.gate_proj.weight": "model-00003-of-00009.safetensors",
52
+ "model.layers.10.block_sparse_moe.experts.2.up_proj.weight": "model-00003-of-00009.safetensors",
53
+ "model.layers.10.block_sparse_moe.gate.weight": "model-00003-of-00009.safetensors",
54
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00009.safetensors",
55
+ "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
56
+ "model.layers.10.post_feedforward_layernorm.weight": "model-00003-of-00009.safetensors",
57
+ "model.layers.10.pre_feedforward_layernorm.weight": "model-00003-of-00009.safetensors",
58
+ "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
59
+ "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
60
+ "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
61
+ "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
62
+ "model.layers.11.block_sparse_moe.experts.0.down_proj.weight": "model-00003-of-00009.safetensors",
63
+ "model.layers.11.block_sparse_moe.experts.0.gate_proj.weight": "model-00003-of-00009.safetensors",
64
+ "model.layers.11.block_sparse_moe.experts.0.up_proj.weight": "model-00003-of-00009.safetensors",
65
+ "model.layers.11.block_sparse_moe.experts.1.down_proj.weight": "model-00003-of-00009.safetensors",
66
+ "model.layers.11.block_sparse_moe.experts.1.gate_proj.weight": "model-00003-of-00009.safetensors",
67
+ "model.layers.11.block_sparse_moe.experts.1.up_proj.weight": "model-00003-of-00009.safetensors",
68
+ "model.layers.11.block_sparse_moe.experts.2.down_proj.weight": "model-00003-of-00009.safetensors",
69
+ "model.layers.11.block_sparse_moe.experts.2.gate_proj.weight": "model-00003-of-00009.safetensors",
70
+ "model.layers.11.block_sparse_moe.experts.2.up_proj.weight": "model-00003-of-00009.safetensors",
71
+ "model.layers.11.block_sparse_moe.gate.weight": "model-00003-of-00009.safetensors",
72
+ "model.layers.11.input_layernorm.weight": "model-00003-of-00009.safetensors",
73
+ "model.layers.11.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
74
+ "model.layers.11.post_feedforward_layernorm.weight": "model-00003-of-00009.safetensors",
75
+ "model.layers.11.pre_feedforward_layernorm.weight": "model-00003-of-00009.safetensors",
76
+ "model.layers.11.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
77
+ "model.layers.11.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
78
+ "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
79
+ "model.layers.11.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
80
+ "model.layers.12.block_sparse_moe.experts.0.down_proj.weight": "model-00003-of-00009.safetensors",
81
+ "model.layers.12.block_sparse_moe.experts.0.gate_proj.weight": "model-00003-of-00009.safetensors",
82
+ "model.layers.12.block_sparse_moe.experts.0.up_proj.weight": "model-00003-of-00009.safetensors",
83
+ "model.layers.12.block_sparse_moe.experts.1.down_proj.weight": "model-00003-of-00009.safetensors",
84
+ "model.layers.12.block_sparse_moe.experts.1.gate_proj.weight": "model-00003-of-00009.safetensors",
85
+ "model.layers.12.block_sparse_moe.experts.1.up_proj.weight": "model-00003-of-00009.safetensors",
86
+ "model.layers.12.block_sparse_moe.experts.2.down_proj.weight": "model-00004-of-00009.safetensors",
87
+ "model.layers.12.block_sparse_moe.experts.2.gate_proj.weight": "model-00003-of-00009.safetensors",
88
+ "model.layers.12.block_sparse_moe.experts.2.up_proj.weight": "model-00003-of-00009.safetensors",
89
+ "model.layers.12.block_sparse_moe.gate.weight": "model-00003-of-00009.safetensors",
90
+ "model.layers.12.input_layernorm.weight": "model-00004-of-00009.safetensors",
91
+ "model.layers.12.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
92
+ "model.layers.12.post_feedforward_layernorm.weight": "model-00004-of-00009.safetensors",
93
+ "model.layers.12.pre_feedforward_layernorm.weight": "model-00004-of-00009.safetensors",
94
+ "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
95
+ "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
96
+ "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
97
+ "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
98
+ "model.layers.13.block_sparse_moe.experts.0.down_proj.weight": "model-00004-of-00009.safetensors",
99
+ "model.layers.13.block_sparse_moe.experts.0.gate_proj.weight": "model-00004-of-00009.safetensors",
100
+ "model.layers.13.block_sparse_moe.experts.0.up_proj.weight": "model-00004-of-00009.safetensors",
101
+ "model.layers.13.block_sparse_moe.experts.1.down_proj.weight": "model-00004-of-00009.safetensors",
102
+ "model.layers.13.block_sparse_moe.experts.1.gate_proj.weight": "model-00004-of-00009.safetensors",
103
+ "model.layers.13.block_sparse_moe.experts.1.up_proj.weight": "model-00004-of-00009.safetensors",
104
+ "model.layers.13.block_sparse_moe.experts.2.down_proj.weight": "model-00004-of-00009.safetensors",
105
+ "model.layers.13.block_sparse_moe.experts.2.gate_proj.weight": "model-00004-of-00009.safetensors",
106
+ "model.layers.13.block_sparse_moe.experts.2.up_proj.weight": "model-00004-of-00009.safetensors",
107
+ "model.layers.13.block_sparse_moe.gate.weight": "model-00004-of-00009.safetensors",
108
+ "model.layers.13.input_layernorm.weight": "model-00004-of-00009.safetensors",
109
+ "model.layers.13.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
110
+ "model.layers.13.post_feedforward_layernorm.weight": "model-00004-of-00009.safetensors",
111
+ "model.layers.13.pre_feedforward_layernorm.weight": "model-00004-of-00009.safetensors",
112
+ "model.layers.13.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
113
+ "model.layers.13.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
114
+ "model.layers.13.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
115
+ "model.layers.13.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
116
+ "model.layers.14.block_sparse_moe.experts.0.down_proj.weight": "model-00004-of-00009.safetensors",
117
+ "model.layers.14.block_sparse_moe.experts.0.gate_proj.weight": "model-00004-of-00009.safetensors",
118
+ "model.layers.14.block_sparse_moe.experts.0.up_proj.weight": "model-00004-of-00009.safetensors",
119
+ "model.layers.14.block_sparse_moe.experts.1.down_proj.weight": "model-00004-of-00009.safetensors",
120
+ "model.layers.14.block_sparse_moe.experts.1.gate_proj.weight": "model-00004-of-00009.safetensors",
121
+ "model.layers.14.block_sparse_moe.experts.1.up_proj.weight": "model-00004-of-00009.safetensors",
122
+ "model.layers.14.block_sparse_moe.experts.2.down_proj.weight": "model-00004-of-00009.safetensors",
123
+ "model.layers.14.block_sparse_moe.experts.2.gate_proj.weight": "model-00004-of-00009.safetensors",
124
+ "model.layers.14.block_sparse_moe.experts.2.up_proj.weight": "model-00004-of-00009.safetensors",
125
+ "model.layers.14.block_sparse_moe.gate.weight": "model-00004-of-00009.safetensors",
126
+ "model.layers.14.input_layernorm.weight": "model-00004-of-00009.safetensors",
127
+ "model.layers.14.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
128
+ "model.layers.14.post_feedforward_layernorm.weight": "model-00004-of-00009.safetensors",
129
+ "model.layers.14.pre_feedforward_layernorm.weight": "model-00004-of-00009.safetensors",
130
+ "model.layers.14.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
131
+ "model.layers.14.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
132
+ "model.layers.14.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
133
+ "model.layers.14.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
134
+ "model.layers.15.block_sparse_moe.experts.0.down_proj.weight": "model-00004-of-00009.safetensors",
135
+ "model.layers.15.block_sparse_moe.experts.0.gate_proj.weight": "model-00004-of-00009.safetensors",
136
+ "model.layers.15.block_sparse_moe.experts.0.up_proj.weight": "model-00004-of-00009.safetensors",
137
+ "model.layers.15.block_sparse_moe.experts.1.down_proj.weight": "model-00004-of-00009.safetensors",
138
+ "model.layers.15.block_sparse_moe.experts.1.gate_proj.weight": "model-00004-of-00009.safetensors",
139
+ "model.layers.15.block_sparse_moe.experts.1.up_proj.weight": "model-00004-of-00009.safetensors",
140
+ "model.layers.15.block_sparse_moe.experts.2.down_proj.weight": "model-00004-of-00009.safetensors",
141
+ "model.layers.15.block_sparse_moe.experts.2.gate_proj.weight": "model-00004-of-00009.safetensors",
142
+ "model.layers.15.block_sparse_moe.experts.2.up_proj.weight": "model-00004-of-00009.safetensors",
143
+ "model.layers.15.block_sparse_moe.gate.weight": "model-00004-of-00009.safetensors",
144
+ "model.layers.15.input_layernorm.weight": "model-00004-of-00009.safetensors",
145
+ "model.layers.15.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
146
+ "model.layers.15.post_feedforward_layernorm.weight": "model-00004-of-00009.safetensors",
147
+ "model.layers.15.pre_feedforward_layernorm.weight": "model-00004-of-00009.safetensors",
148
+ "model.layers.15.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
149
+ "model.layers.15.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
150
+ "model.layers.15.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
151
+ "model.layers.15.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
152
+ "model.layers.16.block_sparse_moe.experts.0.down_proj.weight": "model-00004-of-00009.safetensors",
153
+ "model.layers.16.block_sparse_moe.experts.0.gate_proj.weight": "model-00004-of-00009.safetensors",
154
+ "model.layers.16.block_sparse_moe.experts.0.up_proj.weight": "model-00004-of-00009.safetensors",
155
+ "model.layers.16.block_sparse_moe.experts.1.down_proj.weight": "model-00004-of-00009.safetensors",
156
+ "model.layers.16.block_sparse_moe.experts.1.gate_proj.weight": "model-00004-of-00009.safetensors",
157
+ "model.layers.16.block_sparse_moe.experts.1.up_proj.weight": "model-00004-of-00009.safetensors",
158
+ "model.layers.16.block_sparse_moe.experts.2.down_proj.weight": "model-00004-of-00009.safetensors",
159
+ "model.layers.16.block_sparse_moe.experts.2.gate_proj.weight": "model-00004-of-00009.safetensors",
160
+ "model.layers.16.block_sparse_moe.experts.2.up_proj.weight": "model-00004-of-00009.safetensors",
161
+ "model.layers.16.block_sparse_moe.gate.weight": "model-00004-of-00009.safetensors",
162
+ "model.layers.16.input_layernorm.weight": "model-00004-of-00009.safetensors",
163
+ "model.layers.16.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
164
+ "model.layers.16.post_feedforward_layernorm.weight": "model-00004-of-00009.safetensors",
165
+ "model.layers.16.pre_feedforward_layernorm.weight": "model-00004-of-00009.safetensors",
166
+ "model.layers.16.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
167
+ "model.layers.16.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
168
+ "model.layers.16.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
169
+ "model.layers.16.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
170
+ "model.layers.17.block_sparse_moe.experts.0.down_proj.weight": "model-00004-of-00009.safetensors",
171
+ "model.layers.17.block_sparse_moe.experts.0.gate_proj.weight": "model-00004-of-00009.safetensors",
172
+ "model.layers.17.block_sparse_moe.experts.0.up_proj.weight": "model-00004-of-00009.safetensors",
173
+ "model.layers.17.block_sparse_moe.experts.1.down_proj.weight": "model-00004-of-00009.safetensors",
174
+ "model.layers.17.block_sparse_moe.experts.1.gate_proj.weight": "model-00004-of-00009.safetensors",
175
+ "model.layers.17.block_sparse_moe.experts.1.up_proj.weight": "model-00004-of-00009.safetensors",
176
+ "model.layers.17.block_sparse_moe.experts.2.down_proj.weight": "model-00005-of-00009.safetensors",
177
+ "model.layers.17.block_sparse_moe.experts.2.gate_proj.weight": "model-00004-of-00009.safetensors",
178
+ "model.layers.17.block_sparse_moe.experts.2.up_proj.weight": "model-00005-of-00009.safetensors",
179
+ "model.layers.17.block_sparse_moe.gate.weight": "model-00004-of-00009.safetensors",
180
+ "model.layers.17.input_layernorm.weight": "model-00005-of-00009.safetensors",
181
+ "model.layers.17.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
182
+ "model.layers.17.post_feedforward_layernorm.weight": "model-00005-of-00009.safetensors",
183
+ "model.layers.17.pre_feedforward_layernorm.weight": "model-00005-of-00009.safetensors",
184
+ "model.layers.17.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
185
+ "model.layers.17.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
186
+ "model.layers.17.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
187
+ "model.layers.17.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
188
+ "model.layers.18.block_sparse_moe.experts.0.down_proj.weight": "model-00005-of-00009.safetensors",
189
+ "model.layers.18.block_sparse_moe.experts.0.gate_proj.weight": "model-00005-of-00009.safetensors",
190
+ "model.layers.18.block_sparse_moe.experts.0.up_proj.weight": "model-00005-of-00009.safetensors",
191
+ "model.layers.18.block_sparse_moe.experts.1.down_proj.weight": "model-00005-of-00009.safetensors",
192
+ "model.layers.18.block_sparse_moe.experts.1.gate_proj.weight": "model-00005-of-00009.safetensors",
193
+ "model.layers.18.block_sparse_moe.experts.1.up_proj.weight": "model-00005-of-00009.safetensors",
194
+ "model.layers.18.block_sparse_moe.experts.2.down_proj.weight": "model-00005-of-00009.safetensors",
195
+ "model.layers.18.block_sparse_moe.experts.2.gate_proj.weight": "model-00005-of-00009.safetensors",
196
+ "model.layers.18.block_sparse_moe.experts.2.up_proj.weight": "model-00005-of-00009.safetensors",
197
+ "model.layers.18.block_sparse_moe.gate.weight": "model-00005-of-00009.safetensors",
198
+ "model.layers.18.input_layernorm.weight": "model-00005-of-00009.safetensors",
199
+ "model.layers.18.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
200
+ "model.layers.18.post_feedforward_layernorm.weight": "model-00005-of-00009.safetensors",
201
+ "model.layers.18.pre_feedforward_layernorm.weight": "model-00005-of-00009.safetensors",
202
+ "model.layers.18.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
203
+ "model.layers.18.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
204
+ "model.layers.18.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
205
+ "model.layers.18.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
206
+ "model.layers.19.block_sparse_moe.experts.0.down_proj.weight": "model-00005-of-00009.safetensors",
207
+ "model.layers.19.block_sparse_moe.experts.0.gate_proj.weight": "model-00005-of-00009.safetensors",
208
+ "model.layers.19.block_sparse_moe.experts.0.up_proj.weight": "model-00005-of-00009.safetensors",
209
+ "model.layers.19.block_sparse_moe.experts.1.down_proj.weight": "model-00005-of-00009.safetensors",
210
+ "model.layers.19.block_sparse_moe.experts.1.gate_proj.weight": "model-00005-of-00009.safetensors",
211
+ "model.layers.19.block_sparse_moe.experts.1.up_proj.weight": "model-00005-of-00009.safetensors",
212
+ "model.layers.19.block_sparse_moe.experts.2.down_proj.weight": "model-00005-of-00009.safetensors",
213
+ "model.layers.19.block_sparse_moe.experts.2.gate_proj.weight": "model-00005-of-00009.safetensors",
214
+ "model.layers.19.block_sparse_moe.experts.2.up_proj.weight": "model-00005-of-00009.safetensors",
215
+ "model.layers.19.block_sparse_moe.gate.weight": "model-00005-of-00009.safetensors",
216
+ "model.layers.19.input_layernorm.weight": "model-00005-of-00009.safetensors",
217
+ "model.layers.19.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
218
+ "model.layers.19.post_feedforward_layernorm.weight": "model-00005-of-00009.safetensors",
219
+ "model.layers.19.pre_feedforward_layernorm.weight": "model-00005-of-00009.safetensors",
220
+ "model.layers.19.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
221
+ "model.layers.19.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
222
+ "model.layers.19.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
223
+ "model.layers.19.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
224
+ "model.layers.2.block_sparse_moe.experts.0.down_proj.weight": "model-00001-of-00009.safetensors",
225
+ "model.layers.2.block_sparse_moe.experts.0.gate_proj.weight": "model-00001-of-00009.safetensors",
226
+ "model.layers.2.block_sparse_moe.experts.0.up_proj.weight": "model-00001-of-00009.safetensors",
227
+ "model.layers.2.block_sparse_moe.experts.1.down_proj.weight": "model-00001-of-00009.safetensors",
228
+ "model.layers.2.block_sparse_moe.experts.1.gate_proj.weight": "model-00001-of-00009.safetensors",
229
+ "model.layers.2.block_sparse_moe.experts.1.up_proj.weight": "model-00001-of-00009.safetensors",
230
+ "model.layers.2.block_sparse_moe.experts.2.down_proj.weight": "model-00001-of-00009.safetensors",
231
+ "model.layers.2.block_sparse_moe.experts.2.gate_proj.weight": "model-00001-of-00009.safetensors",
232
+ "model.layers.2.block_sparse_moe.experts.2.up_proj.weight": "model-00001-of-00009.safetensors",
233
+ "model.layers.2.block_sparse_moe.gate.weight": "model-00001-of-00009.safetensors",
234
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00009.safetensors",
235
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
236
+ "model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00009.safetensors",
237
+ "model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00009.safetensors",
238
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
239
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
240
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
241
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
242
+ "model.layers.20.block_sparse_moe.experts.0.down_proj.weight": "model-00005-of-00009.safetensors",
243
+ "model.layers.20.block_sparse_moe.experts.0.gate_proj.weight": "model-00005-of-00009.safetensors",
244
+ "model.layers.20.block_sparse_moe.experts.0.up_proj.weight": "model-00005-of-00009.safetensors",
245
+ "model.layers.20.block_sparse_moe.experts.1.down_proj.weight": "model-00005-of-00009.safetensors",
246
+ "model.layers.20.block_sparse_moe.experts.1.gate_proj.weight": "model-00005-of-00009.safetensors",
247
+ "model.layers.20.block_sparse_moe.experts.1.up_proj.weight": "model-00005-of-00009.safetensors",
248
+ "model.layers.20.block_sparse_moe.experts.2.down_proj.weight": "model-00005-of-00009.safetensors",
249
+ "model.layers.20.block_sparse_moe.experts.2.gate_proj.weight": "model-00005-of-00009.safetensors",
250
+ "model.layers.20.block_sparse_moe.experts.2.up_proj.weight": "model-00005-of-00009.safetensors",
251
+ "model.layers.20.block_sparse_moe.gate.weight": "model-00005-of-00009.safetensors",
252
+ "model.layers.20.input_layernorm.weight": "model-00005-of-00009.safetensors",
253
+ "model.layers.20.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
254
+ "model.layers.20.post_feedforward_layernorm.weight": "model-00005-of-00009.safetensors",
255
+ "model.layers.20.pre_feedforward_layernorm.weight": "model-00005-of-00009.safetensors",
256
+ "model.layers.20.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
257
+ "model.layers.20.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
258
+ "model.layers.20.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
259
+ "model.layers.20.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
260
+ "model.layers.21.block_sparse_moe.experts.0.down_proj.weight": "model-00005-of-00009.safetensors",
261
+ "model.layers.21.block_sparse_moe.experts.0.gate_proj.weight": "model-00005-of-00009.safetensors",
262
+ "model.layers.21.block_sparse_moe.experts.0.up_proj.weight": "model-00005-of-00009.safetensors",
263
+ "model.layers.21.block_sparse_moe.experts.1.down_proj.weight": "model-00005-of-00009.safetensors",
264
+ "model.layers.21.block_sparse_moe.experts.1.gate_proj.weight": "model-00005-of-00009.safetensors",
265
+ "model.layers.21.block_sparse_moe.experts.1.up_proj.weight": "model-00005-of-00009.safetensors",
266
+ "model.layers.21.block_sparse_moe.experts.2.down_proj.weight": "model-00005-of-00009.safetensors",
267
+ "model.layers.21.block_sparse_moe.experts.2.gate_proj.weight": "model-00005-of-00009.safetensors",
268
+ "model.layers.21.block_sparse_moe.experts.2.up_proj.weight": "model-00005-of-00009.safetensors",
269
+ "model.layers.21.block_sparse_moe.gate.weight": "model-00005-of-00009.safetensors",
270
+ "model.layers.21.input_layernorm.weight": "model-00005-of-00009.safetensors",
271
+ "model.layers.21.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
272
+ "model.layers.21.post_feedforward_layernorm.weight": "model-00005-of-00009.safetensors",
273
+ "model.layers.21.pre_feedforward_layernorm.weight": "model-00005-of-00009.safetensors",
274
+ "model.layers.21.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
275
+ "model.layers.21.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
276
+ "model.layers.21.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
277
+ "model.layers.21.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
278
+ "model.layers.22.block_sparse_moe.experts.0.down_proj.weight": "model-00005-of-00009.safetensors",
279
+ "model.layers.22.block_sparse_moe.experts.0.gate_proj.weight": "model-00005-of-00009.safetensors",
280
+ "model.layers.22.block_sparse_moe.experts.0.up_proj.weight": "model-00005-of-00009.safetensors",
281
+ "model.layers.22.block_sparse_moe.experts.1.down_proj.weight": "model-00005-of-00009.safetensors",
282
+ "model.layers.22.block_sparse_moe.experts.1.gate_proj.weight": "model-00005-of-00009.safetensors",
283
+ "model.layers.22.block_sparse_moe.experts.1.up_proj.weight": "model-00005-of-00009.safetensors",
284
+ "model.layers.22.block_sparse_moe.experts.2.down_proj.weight": "model-00006-of-00009.safetensors",
285
+ "model.layers.22.block_sparse_moe.experts.2.gate_proj.weight": "model-00006-of-00009.safetensors",
286
+ "model.layers.22.block_sparse_moe.experts.2.up_proj.weight": "model-00006-of-00009.safetensors",
287
+ "model.layers.22.block_sparse_moe.gate.weight": "model-00005-of-00009.safetensors",
288
+ "model.layers.22.input_layernorm.weight": "model-00006-of-00009.safetensors",
289
+ "model.layers.22.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
290
+ "model.layers.22.post_feedforward_layernorm.weight": "model-00006-of-00009.safetensors",
291
+ "model.layers.22.pre_feedforward_layernorm.weight": "model-00006-of-00009.safetensors",
292
+ "model.layers.22.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
293
+ "model.layers.22.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
294
+ "model.layers.22.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
295
+ "model.layers.22.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
296
+ "model.layers.23.block_sparse_moe.experts.0.down_proj.weight": "model-00006-of-00009.safetensors",
297
+ "model.layers.23.block_sparse_moe.experts.0.gate_proj.weight": "model-00006-of-00009.safetensors",
298
+ "model.layers.23.block_sparse_moe.experts.0.up_proj.weight": "model-00006-of-00009.safetensors",
299
+ "model.layers.23.block_sparse_moe.experts.1.down_proj.weight": "model-00006-of-00009.safetensors",
300
+ "model.layers.23.block_sparse_moe.experts.1.gate_proj.weight": "model-00006-of-00009.safetensors",
301
+ "model.layers.23.block_sparse_moe.experts.1.up_proj.weight": "model-00006-of-00009.safetensors",
302
+ "model.layers.23.block_sparse_moe.experts.2.down_proj.weight": "model-00006-of-00009.safetensors",
303
+ "model.layers.23.block_sparse_moe.experts.2.gate_proj.weight": "model-00006-of-00009.safetensors",
304
+ "model.layers.23.block_sparse_moe.experts.2.up_proj.weight": "model-00006-of-00009.safetensors",
305
+ "model.layers.23.block_sparse_moe.gate.weight": "model-00006-of-00009.safetensors",
306
+ "model.layers.23.input_layernorm.weight": "model-00006-of-00009.safetensors",
307
+ "model.layers.23.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
308
+ "model.layers.23.post_feedforward_layernorm.weight": "model-00006-of-00009.safetensors",
309
+ "model.layers.23.pre_feedforward_layernorm.weight": "model-00006-of-00009.safetensors",
310
+ "model.layers.23.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
311
+ "model.layers.23.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
312
+ "model.layers.23.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
313
+ "model.layers.23.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
314
+ "model.layers.24.block_sparse_moe.experts.0.down_proj.weight": "model-00006-of-00009.safetensors",
315
+ "model.layers.24.block_sparse_moe.experts.0.gate_proj.weight": "model-00006-of-00009.safetensors",
316
+ "model.layers.24.block_sparse_moe.experts.0.up_proj.weight": "model-00006-of-00009.safetensors",
317
+ "model.layers.24.block_sparse_moe.experts.1.down_proj.weight": "model-00006-of-00009.safetensors",
318
+ "model.layers.24.block_sparse_moe.experts.1.gate_proj.weight": "model-00006-of-00009.safetensors",
319
+ "model.layers.24.block_sparse_moe.experts.1.up_proj.weight": "model-00006-of-00009.safetensors",
320
+ "model.layers.24.block_sparse_moe.experts.2.down_proj.weight": "model-00006-of-00009.safetensors",
321
+ "model.layers.24.block_sparse_moe.experts.2.gate_proj.weight": "model-00006-of-00009.safetensors",
322
+ "model.layers.24.block_sparse_moe.experts.2.up_proj.weight": "model-00006-of-00009.safetensors",
323
+ "model.layers.24.block_sparse_moe.gate.weight": "model-00006-of-00009.safetensors",
324
+ "model.layers.24.input_layernorm.weight": "model-00006-of-00009.safetensors",
325
+ "model.layers.24.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
326
+ "model.layers.24.post_feedforward_layernorm.weight": "model-00006-of-00009.safetensors",
327
+ "model.layers.24.pre_feedforward_layernorm.weight": "model-00006-of-00009.safetensors",
328
+ "model.layers.24.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
329
+ "model.layers.24.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
330
+ "model.layers.24.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
331
+ "model.layers.24.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
332
+ "model.layers.25.block_sparse_moe.experts.0.down_proj.weight": "model-00006-of-00009.safetensors",
333
+ "model.layers.25.block_sparse_moe.experts.0.gate_proj.weight": "model-00006-of-00009.safetensors",
334
+ "model.layers.25.block_sparse_moe.experts.0.up_proj.weight": "model-00006-of-00009.safetensors",
335
+ "model.layers.25.block_sparse_moe.experts.1.down_proj.weight": "model-00006-of-00009.safetensors",
336
+ "model.layers.25.block_sparse_moe.experts.1.gate_proj.weight": "model-00006-of-00009.safetensors",
337
+ "model.layers.25.block_sparse_moe.experts.1.up_proj.weight": "model-00006-of-00009.safetensors",
338
+ "model.layers.25.block_sparse_moe.experts.2.down_proj.weight": "model-00006-of-00009.safetensors",
339
+ "model.layers.25.block_sparse_moe.experts.2.gate_proj.weight": "model-00006-of-00009.safetensors",
340
+ "model.layers.25.block_sparse_moe.experts.2.up_proj.weight": "model-00006-of-00009.safetensors",
341
+ "model.layers.25.block_sparse_moe.gate.weight": "model-00006-of-00009.safetensors",
342
+ "model.layers.25.input_layernorm.weight": "model-00006-of-00009.safetensors",
343
+ "model.layers.25.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
344
+ "model.layers.25.post_feedforward_layernorm.weight": "model-00006-of-00009.safetensors",
345
+ "model.layers.25.pre_feedforward_layernorm.weight": "model-00006-of-00009.safetensors",
346
+ "model.layers.25.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
347
+ "model.layers.25.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
348
+ "model.layers.25.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
349
+ "model.layers.25.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
350
+ "model.layers.26.block_sparse_moe.experts.0.down_proj.weight": "model-00006-of-00009.safetensors",
351
+ "model.layers.26.block_sparse_moe.experts.0.gate_proj.weight": "model-00006-of-00009.safetensors",
352
+ "model.layers.26.block_sparse_moe.experts.0.up_proj.weight": "model-00006-of-00009.safetensors",
353
+ "model.layers.26.block_sparse_moe.experts.1.down_proj.weight": "model-00006-of-00009.safetensors",
354
+ "model.layers.26.block_sparse_moe.experts.1.gate_proj.weight": "model-00006-of-00009.safetensors",
355
+ "model.layers.26.block_sparse_moe.experts.1.up_proj.weight": "model-00006-of-00009.safetensors",
356
+ "model.layers.26.block_sparse_moe.experts.2.down_proj.weight": "model-00006-of-00009.safetensors",
357
+ "model.layers.26.block_sparse_moe.experts.2.gate_proj.weight": "model-00006-of-00009.safetensors",
358
+ "model.layers.26.block_sparse_moe.experts.2.up_proj.weight": "model-00006-of-00009.safetensors",
359
+ "model.layers.26.block_sparse_moe.gate.weight": "model-00006-of-00009.safetensors",
360
+ "model.layers.26.input_layernorm.weight": "model-00006-of-00009.safetensors",
361
+ "model.layers.26.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
362
+ "model.layers.26.post_feedforward_layernorm.weight": "model-00006-of-00009.safetensors",
363
+ "model.layers.26.pre_feedforward_layernorm.weight": "model-00006-of-00009.safetensors",
364
+ "model.layers.26.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
365
+ "model.layers.26.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
366
+ "model.layers.26.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
367
+ "model.layers.26.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
368
+ "model.layers.27.block_sparse_moe.experts.0.down_proj.weight": "model-00006-of-00009.safetensors",
369
+ "model.layers.27.block_sparse_moe.experts.0.gate_proj.weight": "model-00006-of-00009.safetensors",
370
+ "model.layers.27.block_sparse_moe.experts.0.up_proj.weight": "model-00006-of-00009.safetensors",
371
+ "model.layers.27.block_sparse_moe.experts.1.down_proj.weight": "model-00007-of-00009.safetensors",
372
+ "model.layers.27.block_sparse_moe.experts.1.gate_proj.weight": "model-00006-of-00009.safetensors",
373
+ "model.layers.27.block_sparse_moe.experts.1.up_proj.weight": "model-00006-of-00009.safetensors",
374
+ "model.layers.27.block_sparse_moe.experts.2.down_proj.weight": "model-00007-of-00009.safetensors",
375
+ "model.layers.27.block_sparse_moe.experts.2.gate_proj.weight": "model-00007-of-00009.safetensors",
376
+ "model.layers.27.block_sparse_moe.experts.2.up_proj.weight": "model-00007-of-00009.safetensors",
377
+ "model.layers.27.block_sparse_moe.gate.weight": "model-00006-of-00009.safetensors",
378
+ "model.layers.27.input_layernorm.weight": "model-00007-of-00009.safetensors",
379
+ "model.layers.27.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
380
+ "model.layers.27.post_feedforward_layernorm.weight": "model-00007-of-00009.safetensors",
381
+ "model.layers.27.pre_feedforward_layernorm.weight": "model-00007-of-00009.safetensors",
382
+ "model.layers.27.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
383
+ "model.layers.27.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
384
+ "model.layers.27.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
385
+ "model.layers.27.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
386
+ "model.layers.28.block_sparse_moe.experts.0.down_proj.weight": "model-00007-of-00009.safetensors",
387
+ "model.layers.28.block_sparse_moe.experts.0.gate_proj.weight": "model-00007-of-00009.safetensors",
388
+ "model.layers.28.block_sparse_moe.experts.0.up_proj.weight": "model-00007-of-00009.safetensors",
389
+ "model.layers.28.block_sparse_moe.experts.1.down_proj.weight": "model-00007-of-00009.safetensors",
390
+ "model.layers.28.block_sparse_moe.experts.1.gate_proj.weight": "model-00007-of-00009.safetensors",
391
+ "model.layers.28.block_sparse_moe.experts.1.up_proj.weight": "model-00007-of-00009.safetensors",
392
+ "model.layers.28.block_sparse_moe.experts.2.down_proj.weight": "model-00007-of-00009.safetensors",
393
+ "model.layers.28.block_sparse_moe.experts.2.gate_proj.weight": "model-00007-of-00009.safetensors",
394
+ "model.layers.28.block_sparse_moe.experts.2.up_proj.weight": "model-00007-of-00009.safetensors",
395
+ "model.layers.28.block_sparse_moe.gate.weight": "model-00007-of-00009.safetensors",
396
+ "model.layers.28.input_layernorm.weight": "model-00007-of-00009.safetensors",
397
+ "model.layers.28.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
398
+ "model.layers.28.post_feedforward_layernorm.weight": "model-00007-of-00009.safetensors",
399
+ "model.layers.28.pre_feedforward_layernorm.weight": "model-00007-of-00009.safetensors",
400
+ "model.layers.28.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
401
+ "model.layers.28.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
402
+ "model.layers.28.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
403
+ "model.layers.28.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
404
+ "model.layers.29.block_sparse_moe.experts.0.down_proj.weight": "model-00007-of-00009.safetensors",
405
+ "model.layers.29.block_sparse_moe.experts.0.gate_proj.weight": "model-00007-of-00009.safetensors",
406
+ "model.layers.29.block_sparse_moe.experts.0.up_proj.weight": "model-00007-of-00009.safetensors",
407
+ "model.layers.29.block_sparse_moe.experts.1.down_proj.weight": "model-00007-of-00009.safetensors",
408
+ "model.layers.29.block_sparse_moe.experts.1.gate_proj.weight": "model-00007-of-00009.safetensors",
409
+ "model.layers.29.block_sparse_moe.experts.1.up_proj.weight": "model-00007-of-00009.safetensors",
410
+ "model.layers.29.block_sparse_moe.experts.2.down_proj.weight": "model-00007-of-00009.safetensors",
411
+ "model.layers.29.block_sparse_moe.experts.2.gate_proj.weight": "model-00007-of-00009.safetensors",
412
+ "model.layers.29.block_sparse_moe.experts.2.up_proj.weight": "model-00007-of-00009.safetensors",
413
+ "model.layers.29.block_sparse_moe.gate.weight": "model-00007-of-00009.safetensors",
414
+ "model.layers.29.input_layernorm.weight": "model-00007-of-00009.safetensors",
415
+ "model.layers.29.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
416
+ "model.layers.29.post_feedforward_layernorm.weight": "model-00007-of-00009.safetensors",
417
+ "model.layers.29.pre_feedforward_layernorm.weight": "model-00007-of-00009.safetensors",
418
+ "model.layers.29.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
419
+ "model.layers.29.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
420
+ "model.layers.29.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
421
+ "model.layers.29.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
422
+ "model.layers.3.block_sparse_moe.experts.0.down_proj.weight": "model-00002-of-00009.safetensors",
423
+ "model.layers.3.block_sparse_moe.experts.0.gate_proj.weight": "model-00002-of-00009.safetensors",
424
+ "model.layers.3.block_sparse_moe.experts.0.up_proj.weight": "model-00002-of-00009.safetensors",
425
+ "model.layers.3.block_sparse_moe.experts.1.down_proj.weight": "model-00002-of-00009.safetensors",
426
+ "model.layers.3.block_sparse_moe.experts.1.gate_proj.weight": "model-00002-of-00009.safetensors",
427
+ "model.layers.3.block_sparse_moe.experts.1.up_proj.weight": "model-00002-of-00009.safetensors",
428
+ "model.layers.3.block_sparse_moe.experts.2.down_proj.weight": "model-00002-of-00009.safetensors",
429
+ "model.layers.3.block_sparse_moe.experts.2.gate_proj.weight": "model-00002-of-00009.safetensors",
430
+ "model.layers.3.block_sparse_moe.experts.2.up_proj.weight": "model-00002-of-00009.safetensors",
431
+ "model.layers.3.block_sparse_moe.gate.weight": "model-00001-of-00009.safetensors",
432
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00009.safetensors",
433
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
434
+ "model.layers.3.post_feedforward_layernorm.weight": "model-00002-of-00009.safetensors",
435
+ "model.layers.3.pre_feedforward_layernorm.weight": "model-00002-of-00009.safetensors",
436
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
437
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
438
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
439
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
440
+ "model.layers.30.block_sparse_moe.experts.0.down_proj.weight": "model-00007-of-00009.safetensors",
441
+ "model.layers.30.block_sparse_moe.experts.0.gate_proj.weight": "model-00007-of-00009.safetensors",
442
+ "model.layers.30.block_sparse_moe.experts.0.up_proj.weight": "model-00007-of-00009.safetensors",
443
+ "model.layers.30.block_sparse_moe.experts.1.down_proj.weight": "model-00007-of-00009.safetensors",
444
+ "model.layers.30.block_sparse_moe.experts.1.gate_proj.weight": "model-00007-of-00009.safetensors",
445
+ "model.layers.30.block_sparse_moe.experts.1.up_proj.weight": "model-00007-of-00009.safetensors",
446
+ "model.layers.30.block_sparse_moe.experts.2.down_proj.weight": "model-00007-of-00009.safetensors",
447
+ "model.layers.30.block_sparse_moe.experts.2.gate_proj.weight": "model-00007-of-00009.safetensors",
448
+ "model.layers.30.block_sparse_moe.experts.2.up_proj.weight": "model-00007-of-00009.safetensors",
449
+ "model.layers.30.block_sparse_moe.gate.weight": "model-00007-of-00009.safetensors",
450
+ "model.layers.30.input_layernorm.weight": "model-00007-of-00009.safetensors",
451
+ "model.layers.30.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
452
+ "model.layers.30.post_feedforward_layernorm.weight": "model-00007-of-00009.safetensors",
453
+ "model.layers.30.pre_feedforward_layernorm.weight": "model-00007-of-00009.safetensors",
454
+ "model.layers.30.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
455
+ "model.layers.30.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
456
+ "model.layers.30.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
457
+ "model.layers.30.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
458
+ "model.layers.31.block_sparse_moe.experts.0.down_proj.weight": "model-00007-of-00009.safetensors",
459
+ "model.layers.31.block_sparse_moe.experts.0.gate_proj.weight": "model-00007-of-00009.safetensors",
460
+ "model.layers.31.block_sparse_moe.experts.0.up_proj.weight": "model-00007-of-00009.safetensors",
461
+ "model.layers.31.block_sparse_moe.experts.1.down_proj.weight": "model-00007-of-00009.safetensors",
462
+ "model.layers.31.block_sparse_moe.experts.1.gate_proj.weight": "model-00007-of-00009.safetensors",
463
+ "model.layers.31.block_sparse_moe.experts.1.up_proj.weight": "model-00007-of-00009.safetensors",
464
+ "model.layers.31.block_sparse_moe.experts.2.down_proj.weight": "model-00007-of-00009.safetensors",
465
+ "model.layers.31.block_sparse_moe.experts.2.gate_proj.weight": "model-00007-of-00009.safetensors",
466
+ "model.layers.31.block_sparse_moe.experts.2.up_proj.weight": "model-00007-of-00009.safetensors",
467
+ "model.layers.31.block_sparse_moe.gate.weight": "model-00007-of-00009.safetensors",
468
+ "model.layers.31.input_layernorm.weight": "model-00007-of-00009.safetensors",
469
+ "model.layers.31.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
470
+ "model.layers.31.post_feedforward_layernorm.weight": "model-00007-of-00009.safetensors",
471
+ "model.layers.31.pre_feedforward_layernorm.weight": "model-00007-of-00009.safetensors",
472
+ "model.layers.31.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
473
+ "model.layers.31.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
474
+ "model.layers.31.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
475
+ "model.layers.31.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
476
+ "model.layers.32.block_sparse_moe.experts.0.down_proj.weight": "model-00007-of-00009.safetensors",
477
+ "model.layers.32.block_sparse_moe.experts.0.gate_proj.weight": "model-00007-of-00009.safetensors",
478
+ "model.layers.32.block_sparse_moe.experts.0.up_proj.weight": "model-00007-of-00009.safetensors",
479
+ "model.layers.32.block_sparse_moe.experts.1.down_proj.weight": "model-00008-of-00009.safetensors",
480
+ "model.layers.32.block_sparse_moe.experts.1.gate_proj.weight": "model-00007-of-00009.safetensors",
481
+ "model.layers.32.block_sparse_moe.experts.1.up_proj.weight": "model-00008-of-00009.safetensors",
482
+ "model.layers.32.block_sparse_moe.experts.2.down_proj.weight": "model-00008-of-00009.safetensors",
483
+ "model.layers.32.block_sparse_moe.experts.2.gate_proj.weight": "model-00008-of-00009.safetensors",
484
+ "model.layers.32.block_sparse_moe.experts.2.up_proj.weight": "model-00008-of-00009.safetensors",
485
+ "model.layers.32.block_sparse_moe.gate.weight": "model-00007-of-00009.safetensors",
486
+ "model.layers.32.input_layernorm.weight": "model-00008-of-00009.safetensors",
487
+ "model.layers.32.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
488
+ "model.layers.32.post_feedforward_layernorm.weight": "model-00008-of-00009.safetensors",
489
+ "model.layers.32.pre_feedforward_layernorm.weight": "model-00008-of-00009.safetensors",
490
+ "model.layers.32.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
491
+ "model.layers.32.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
492
+ "model.layers.32.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
493
+ "model.layers.32.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
494
+ "model.layers.33.block_sparse_moe.experts.0.down_proj.weight": "model-00008-of-00009.safetensors",
495
+ "model.layers.33.block_sparse_moe.experts.0.gate_proj.weight": "model-00008-of-00009.safetensors",
496
+ "model.layers.33.block_sparse_moe.experts.0.up_proj.weight": "model-00008-of-00009.safetensors",
497
+ "model.layers.33.block_sparse_moe.experts.1.down_proj.weight": "model-00008-of-00009.safetensors",
498
+ "model.layers.33.block_sparse_moe.experts.1.gate_proj.weight": "model-00008-of-00009.safetensors",
499
+ "model.layers.33.block_sparse_moe.experts.1.up_proj.weight": "model-00008-of-00009.safetensors",
500
+ "model.layers.33.block_sparse_moe.experts.2.down_proj.weight": "model-00008-of-00009.safetensors",
501
+ "model.layers.33.block_sparse_moe.experts.2.gate_proj.weight": "model-00008-of-00009.safetensors",
502
+ "model.layers.33.block_sparse_moe.experts.2.up_proj.weight": "model-00008-of-00009.safetensors",
503
+ "model.layers.33.block_sparse_moe.gate.weight": "model-00008-of-00009.safetensors",
504
+ "model.layers.33.input_layernorm.weight": "model-00008-of-00009.safetensors",
505
+ "model.layers.33.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
506
+ "model.layers.33.post_feedforward_layernorm.weight": "model-00008-of-00009.safetensors",
507
+ "model.layers.33.pre_feedforward_layernorm.weight": "model-00008-of-00009.safetensors",
508
+ "model.layers.33.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
509
+ "model.layers.33.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
510
+ "model.layers.33.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
511
+ "model.layers.33.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
512
+ "model.layers.34.block_sparse_moe.experts.0.down_proj.weight": "model-00008-of-00009.safetensors",
513
+ "model.layers.34.block_sparse_moe.experts.0.gate_proj.weight": "model-00008-of-00009.safetensors",
514
+ "model.layers.34.block_sparse_moe.experts.0.up_proj.weight": "model-00008-of-00009.safetensors",
515
+ "model.layers.34.block_sparse_moe.experts.1.down_proj.weight": "model-00008-of-00009.safetensors",
516
+ "model.layers.34.block_sparse_moe.experts.1.gate_proj.weight": "model-00008-of-00009.safetensors",
517
+ "model.layers.34.block_sparse_moe.experts.1.up_proj.weight": "model-00008-of-00009.safetensors",
518
+ "model.layers.34.block_sparse_moe.experts.2.down_proj.weight": "model-00008-of-00009.safetensors",
519
+ "model.layers.34.block_sparse_moe.experts.2.gate_proj.weight": "model-00008-of-00009.safetensors",
520
+ "model.layers.34.block_sparse_moe.experts.2.up_proj.weight": "model-00008-of-00009.safetensors",
521
+ "model.layers.34.block_sparse_moe.gate.weight": "model-00008-of-00009.safetensors",
522
+ "model.layers.34.input_layernorm.weight": "model-00008-of-00009.safetensors",
523
+ "model.layers.34.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
524
+ "model.layers.34.post_feedforward_layernorm.weight": "model-00008-of-00009.safetensors",
525
+ "model.layers.34.pre_feedforward_layernorm.weight": "model-00008-of-00009.safetensors",
526
+ "model.layers.34.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
527
+ "model.layers.34.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
528
+ "model.layers.34.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
529
+ "model.layers.34.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
530
+ "model.layers.35.block_sparse_moe.experts.0.down_proj.weight": "model-00008-of-00009.safetensors",
531
+ "model.layers.35.block_sparse_moe.experts.0.gate_proj.weight": "model-00008-of-00009.safetensors",
532
+ "model.layers.35.block_sparse_moe.experts.0.up_proj.weight": "model-00008-of-00009.safetensors",
533
+ "model.layers.35.block_sparse_moe.experts.1.down_proj.weight": "model-00008-of-00009.safetensors",
534
+ "model.layers.35.block_sparse_moe.experts.1.gate_proj.weight": "model-00008-of-00009.safetensors",
535
+ "model.layers.35.block_sparse_moe.experts.1.up_proj.weight": "model-00008-of-00009.safetensors",
536
+ "model.layers.35.block_sparse_moe.experts.2.down_proj.weight": "model-00008-of-00009.safetensors",
537
+ "model.layers.35.block_sparse_moe.experts.2.gate_proj.weight": "model-00008-of-00009.safetensors",
538
+ "model.layers.35.block_sparse_moe.experts.2.up_proj.weight": "model-00008-of-00009.safetensors",
539
+ "model.layers.35.block_sparse_moe.gate.weight": "model-00008-of-00009.safetensors",
540
+ "model.layers.35.input_layernorm.weight": "model-00008-of-00009.safetensors",
541
+ "model.layers.35.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
542
+ "model.layers.35.post_feedforward_layernorm.weight": "model-00008-of-00009.safetensors",
543
+ "model.layers.35.pre_feedforward_layernorm.weight": "model-00008-of-00009.safetensors",
544
+ "model.layers.35.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
545
+ "model.layers.35.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
546
+ "model.layers.35.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
547
+ "model.layers.35.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
548
+ "model.layers.36.block_sparse_moe.experts.0.down_proj.weight": "model-00008-of-00009.safetensors",
549
+ "model.layers.36.block_sparse_moe.experts.0.gate_proj.weight": "model-00008-of-00009.safetensors",
550
+ "model.layers.36.block_sparse_moe.experts.0.up_proj.weight": "model-00008-of-00009.safetensors",
551
+ "model.layers.36.block_sparse_moe.experts.1.down_proj.weight": "model-00008-of-00009.safetensors",
552
+ "model.layers.36.block_sparse_moe.experts.1.gate_proj.weight": "model-00008-of-00009.safetensors",
553
+ "model.layers.36.block_sparse_moe.experts.1.up_proj.weight": "model-00008-of-00009.safetensors",
554
+ "model.layers.36.block_sparse_moe.experts.2.down_proj.weight": "model-00008-of-00009.safetensors",
555
+ "model.layers.36.block_sparse_moe.experts.2.gate_proj.weight": "model-00008-of-00009.safetensors",
556
+ "model.layers.36.block_sparse_moe.experts.2.up_proj.weight": "model-00008-of-00009.safetensors",
557
+ "model.layers.36.block_sparse_moe.gate.weight": "model-00008-of-00009.safetensors",
558
+ "model.layers.36.input_layernorm.weight": "model-00008-of-00009.safetensors",
559
+ "model.layers.36.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
560
+ "model.layers.36.post_feedforward_layernorm.weight": "model-00008-of-00009.safetensors",
561
+ "model.layers.36.pre_feedforward_layernorm.weight": "model-00008-of-00009.safetensors",
562
+ "model.layers.36.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
563
+ "model.layers.36.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
564
+ "model.layers.36.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
565
+ "model.layers.36.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
566
+ "model.layers.37.block_sparse_moe.experts.0.down_proj.weight": "model-00008-of-00009.safetensors",
567
+ "model.layers.37.block_sparse_moe.experts.0.gate_proj.weight": "model-00008-of-00009.safetensors",
568
+ "model.layers.37.block_sparse_moe.experts.0.up_proj.weight": "model-00008-of-00009.safetensors",
569
+ "model.layers.37.block_sparse_moe.experts.1.down_proj.weight": "model-00009-of-00009.safetensors",
570
+ "model.layers.37.block_sparse_moe.experts.1.gate_proj.weight": "model-00009-of-00009.safetensors",
571
+ "model.layers.37.block_sparse_moe.experts.1.up_proj.weight": "model-00009-of-00009.safetensors",
572
+ "model.layers.37.block_sparse_moe.experts.2.down_proj.weight": "model-00009-of-00009.safetensors",
573
+ "model.layers.37.block_sparse_moe.experts.2.gate_proj.weight": "model-00009-of-00009.safetensors",
574
+ "model.layers.37.block_sparse_moe.experts.2.up_proj.weight": "model-00009-of-00009.safetensors",
575
+ "model.layers.37.block_sparse_moe.gate.weight": "model-00008-of-00009.safetensors",
576
+ "model.layers.37.input_layernorm.weight": "model-00009-of-00009.safetensors",
577
+ "model.layers.37.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
578
+ "model.layers.37.post_feedforward_layernorm.weight": "model-00009-of-00009.safetensors",
579
+ "model.layers.37.pre_feedforward_layernorm.weight": "model-00009-of-00009.safetensors",
580
+ "model.layers.37.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
581
+ "model.layers.37.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
582
+ "model.layers.37.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
583
+ "model.layers.37.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
584
+ "model.layers.38.block_sparse_moe.experts.0.down_proj.weight": "model-00009-of-00009.safetensors",
585
+ "model.layers.38.block_sparse_moe.experts.0.gate_proj.weight": "model-00009-of-00009.safetensors",
586
+ "model.layers.38.block_sparse_moe.experts.0.up_proj.weight": "model-00009-of-00009.safetensors",
587
+ "model.layers.38.block_sparse_moe.experts.1.down_proj.weight": "model-00009-of-00009.safetensors",
588
+ "model.layers.38.block_sparse_moe.experts.1.gate_proj.weight": "model-00009-of-00009.safetensors",
589
+ "model.layers.38.block_sparse_moe.experts.1.up_proj.weight": "model-00009-of-00009.safetensors",
590
+ "model.layers.38.block_sparse_moe.experts.2.down_proj.weight": "model-00009-of-00009.safetensors",
591
+ "model.layers.38.block_sparse_moe.experts.2.gate_proj.weight": "model-00009-of-00009.safetensors",
592
+ "model.layers.38.block_sparse_moe.experts.2.up_proj.weight": "model-00009-of-00009.safetensors",
593
+ "model.layers.38.block_sparse_moe.gate.weight": "model-00009-of-00009.safetensors",
594
+ "model.layers.38.input_layernorm.weight": "model-00009-of-00009.safetensors",
595
+ "model.layers.38.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
596
+ "model.layers.38.post_feedforward_layernorm.weight": "model-00009-of-00009.safetensors",
597
+ "model.layers.38.pre_feedforward_layernorm.weight": "model-00009-of-00009.safetensors",
598
+ "model.layers.38.self_attn.k_proj.weight": "model-00009-of-00009.safetensors",
599
+ "model.layers.38.self_attn.o_proj.weight": "model-00009-of-00009.safetensors",
600
+ "model.layers.38.self_attn.q_proj.weight": "model-00009-of-00009.safetensors",
601
+ "model.layers.38.self_attn.v_proj.weight": "model-00009-of-00009.safetensors",
602
+ "model.layers.39.block_sparse_moe.experts.0.down_proj.weight": "model-00009-of-00009.safetensors",
603
+ "model.layers.39.block_sparse_moe.experts.0.gate_proj.weight": "model-00009-of-00009.safetensors",
604
+ "model.layers.39.block_sparse_moe.experts.0.up_proj.weight": "model-00009-of-00009.safetensors",
605
+ "model.layers.39.block_sparse_moe.experts.1.down_proj.weight": "model-00009-of-00009.safetensors",
606
+ "model.layers.39.block_sparse_moe.experts.1.gate_proj.weight": "model-00009-of-00009.safetensors",
607
+ "model.layers.39.block_sparse_moe.experts.1.up_proj.weight": "model-00009-of-00009.safetensors",
608
+ "model.layers.39.block_sparse_moe.experts.2.down_proj.weight": "model-00009-of-00009.safetensors",
609
+ "model.layers.39.block_sparse_moe.experts.2.gate_proj.weight": "model-00009-of-00009.safetensors",
610
+ "model.layers.39.block_sparse_moe.experts.2.up_proj.weight": "model-00009-of-00009.safetensors",
611
+ "model.layers.39.block_sparse_moe.gate.weight": "model-00009-of-00009.safetensors",
612
+ "model.layers.39.input_layernorm.weight": "model-00009-of-00009.safetensors",
613
+ "model.layers.39.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
614
+ "model.layers.39.post_feedforward_layernorm.weight": "model-00009-of-00009.safetensors",
615
+ "model.layers.39.pre_feedforward_layernorm.weight": "model-00009-of-00009.safetensors",
616
+ "model.layers.39.self_attn.k_proj.weight": "model-00009-of-00009.safetensors",
617
+ "model.layers.39.self_attn.o_proj.weight": "model-00009-of-00009.safetensors",
618
+ "model.layers.39.self_attn.q_proj.weight": "model-00009-of-00009.safetensors",
619
+ "model.layers.39.self_attn.v_proj.weight": "model-00009-of-00009.safetensors",
620
+ "model.layers.4.block_sparse_moe.experts.0.down_proj.weight": "model-00002-of-00009.safetensors",
621
+ "model.layers.4.block_sparse_moe.experts.0.gate_proj.weight": "model-00002-of-00009.safetensors",
622
+ "model.layers.4.block_sparse_moe.experts.0.up_proj.weight": "model-00002-of-00009.safetensors",
623
+ "model.layers.4.block_sparse_moe.experts.1.down_proj.weight": "model-00002-of-00009.safetensors",
624
+ "model.layers.4.block_sparse_moe.experts.1.gate_proj.weight": "model-00002-of-00009.safetensors",
625
+ "model.layers.4.block_sparse_moe.experts.1.up_proj.weight": "model-00002-of-00009.safetensors",
626
+ "model.layers.4.block_sparse_moe.experts.2.down_proj.weight": "model-00002-of-00009.safetensors",
627
+ "model.layers.4.block_sparse_moe.experts.2.gate_proj.weight": "model-00002-of-00009.safetensors",
628
+ "model.layers.4.block_sparse_moe.experts.2.up_proj.weight": "model-00002-of-00009.safetensors",
629
+ "model.layers.4.block_sparse_moe.gate.weight": "model-00002-of-00009.safetensors",
630
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00009.safetensors",
631
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
632
+ "model.layers.4.post_feedforward_layernorm.weight": "model-00002-of-00009.safetensors",
633
+ "model.layers.4.pre_feedforward_layernorm.weight": "model-00002-of-00009.safetensors",
634
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
635
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
636
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
637
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
638
+ "model.layers.40.block_sparse_moe.experts.0.down_proj.weight": "model-00009-of-00009.safetensors",
639
+ "model.layers.40.block_sparse_moe.experts.0.gate_proj.weight": "model-00009-of-00009.safetensors",
640
+ "model.layers.40.block_sparse_moe.experts.0.up_proj.weight": "model-00009-of-00009.safetensors",
641
+ "model.layers.40.block_sparse_moe.experts.1.down_proj.weight": "model-00009-of-00009.safetensors",
642
+ "model.layers.40.block_sparse_moe.experts.1.gate_proj.weight": "model-00009-of-00009.safetensors",
643
+ "model.layers.40.block_sparse_moe.experts.1.up_proj.weight": "model-00009-of-00009.safetensors",
644
+ "model.layers.40.block_sparse_moe.experts.2.down_proj.weight": "model-00009-of-00009.safetensors",
645
+ "model.layers.40.block_sparse_moe.experts.2.gate_proj.weight": "model-00009-of-00009.safetensors",
646
+ "model.layers.40.block_sparse_moe.experts.2.up_proj.weight": "model-00009-of-00009.safetensors",
647
+ "model.layers.40.block_sparse_moe.gate.weight": "model-00009-of-00009.safetensors",
648
+ "model.layers.40.input_layernorm.weight": "model-00009-of-00009.safetensors",
649
+ "model.layers.40.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
650
+ "model.layers.40.post_feedforward_layernorm.weight": "model-00009-of-00009.safetensors",
651
+ "model.layers.40.pre_feedforward_layernorm.weight": "model-00009-of-00009.safetensors",
652
+ "model.layers.40.self_attn.k_proj.weight": "model-00009-of-00009.safetensors",
653
+ "model.layers.40.self_attn.o_proj.weight": "model-00009-of-00009.safetensors",
654
+ "model.layers.40.self_attn.q_proj.weight": "model-00009-of-00009.safetensors",
655
+ "model.layers.40.self_attn.v_proj.weight": "model-00009-of-00009.safetensors",
656
+ "model.layers.41.block_sparse_moe.experts.0.down_proj.weight": "model-00009-of-00009.safetensors",
657
+ "model.layers.41.block_sparse_moe.experts.0.gate_proj.weight": "model-00009-of-00009.safetensors",
658
+ "model.layers.41.block_sparse_moe.experts.0.up_proj.weight": "model-00009-of-00009.safetensors",
659
+ "model.layers.41.block_sparse_moe.experts.1.down_proj.weight": "model-00009-of-00009.safetensors",
660
+ "model.layers.41.block_sparse_moe.experts.1.gate_proj.weight": "model-00009-of-00009.safetensors",
661
+ "model.layers.41.block_sparse_moe.experts.1.up_proj.weight": "model-00009-of-00009.safetensors",
662
+ "model.layers.41.block_sparse_moe.experts.2.down_proj.weight": "model-00009-of-00009.safetensors",
663
+ "model.layers.41.block_sparse_moe.experts.2.gate_proj.weight": "model-00009-of-00009.safetensors",
664
+ "model.layers.41.block_sparse_moe.experts.2.up_proj.weight": "model-00009-of-00009.safetensors",
665
+ "model.layers.41.block_sparse_moe.gate.weight": "model-00009-of-00009.safetensors",
666
+ "model.layers.41.input_layernorm.weight": "model-00009-of-00009.safetensors",
667
+ "model.layers.41.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
668
+ "model.layers.41.post_feedforward_layernorm.weight": "model-00009-of-00009.safetensors",
669
+ "model.layers.41.pre_feedforward_layernorm.weight": "model-00009-of-00009.safetensors",
670
+ "model.layers.41.self_attn.k_proj.weight": "model-00009-of-00009.safetensors",
671
+ "model.layers.41.self_attn.o_proj.weight": "model-00009-of-00009.safetensors",
672
+ "model.layers.41.self_attn.q_proj.weight": "model-00009-of-00009.safetensors",
673
+ "model.layers.41.self_attn.v_proj.weight": "model-00009-of-00009.safetensors",
674
+ "model.layers.5.block_sparse_moe.experts.0.down_proj.weight": "model-00002-of-00009.safetensors",
675
+ "model.layers.5.block_sparse_moe.experts.0.gate_proj.weight": "model-00002-of-00009.safetensors",
676
+ "model.layers.5.block_sparse_moe.experts.0.up_proj.weight": "model-00002-of-00009.safetensors",
677
+ "model.layers.5.block_sparse_moe.experts.1.down_proj.weight": "model-00002-of-00009.safetensors",
678
+ "model.layers.5.block_sparse_moe.experts.1.gate_proj.weight": "model-00002-of-00009.safetensors",
679
+ "model.layers.5.block_sparse_moe.experts.1.up_proj.weight": "model-00002-of-00009.safetensors",
680
+ "model.layers.5.block_sparse_moe.experts.2.down_proj.weight": "model-00002-of-00009.safetensors",
681
+ "model.layers.5.block_sparse_moe.experts.2.gate_proj.weight": "model-00002-of-00009.safetensors",
682
+ "model.layers.5.block_sparse_moe.experts.2.up_proj.weight": "model-00002-of-00009.safetensors",
683
+ "model.layers.5.block_sparse_moe.gate.weight": "model-00002-of-00009.safetensors",
684
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00009.safetensors",
685
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
686
+ "model.layers.5.post_feedforward_layernorm.weight": "model-00002-of-00009.safetensors",
687
+ "model.layers.5.pre_feedforward_layernorm.weight": "model-00002-of-00009.safetensors",
688
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
689
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
690
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
691
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
692
+ "model.layers.6.block_sparse_moe.experts.0.down_proj.weight": "model-00002-of-00009.safetensors",
693
+ "model.layers.6.block_sparse_moe.experts.0.gate_proj.weight": "model-00002-of-00009.safetensors",
694
+ "model.layers.6.block_sparse_moe.experts.0.up_proj.weight": "model-00002-of-00009.safetensors",
695
+ "model.layers.6.block_sparse_moe.experts.1.down_proj.weight": "model-00002-of-00009.safetensors",
696
+ "model.layers.6.block_sparse_moe.experts.1.gate_proj.weight": "model-00002-of-00009.safetensors",
697
+ "model.layers.6.block_sparse_moe.experts.1.up_proj.weight": "model-00002-of-00009.safetensors",
698
+ "model.layers.6.block_sparse_moe.experts.2.down_proj.weight": "model-00002-of-00009.safetensors",
699
+ "model.layers.6.block_sparse_moe.experts.2.gate_proj.weight": "model-00002-of-00009.safetensors",
700
+ "model.layers.6.block_sparse_moe.experts.2.up_proj.weight": "model-00002-of-00009.safetensors",
701
+ "model.layers.6.block_sparse_moe.gate.weight": "model-00002-of-00009.safetensors",
702
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00009.safetensors",
703
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
704
+ "model.layers.6.post_feedforward_layernorm.weight": "model-00002-of-00009.safetensors",
705
+ "model.layers.6.pre_feedforward_layernorm.weight": "model-00002-of-00009.safetensors",
706
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
707
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
708
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
709
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
710
+ "model.layers.7.block_sparse_moe.experts.0.down_proj.weight": "model-00002-of-00009.safetensors",
711
+ "model.layers.7.block_sparse_moe.experts.0.gate_proj.weight": "model-00002-of-00009.safetensors",
712
+ "model.layers.7.block_sparse_moe.experts.0.up_proj.weight": "model-00002-of-00009.safetensors",
713
+ "model.layers.7.block_sparse_moe.experts.1.down_proj.weight": "model-00002-of-00009.safetensors",
714
+ "model.layers.7.block_sparse_moe.experts.1.gate_proj.weight": "model-00002-of-00009.safetensors",
715
+ "model.layers.7.block_sparse_moe.experts.1.up_proj.weight": "model-00002-of-00009.safetensors",
716
+ "model.layers.7.block_sparse_moe.experts.2.down_proj.weight": "model-00002-of-00009.safetensors",
717
+ "model.layers.7.block_sparse_moe.experts.2.gate_proj.weight": "model-00002-of-00009.safetensors",
718
+ "model.layers.7.block_sparse_moe.experts.2.up_proj.weight": "model-00002-of-00009.safetensors",
719
+ "model.layers.7.block_sparse_moe.gate.weight": "model-00002-of-00009.safetensors",
720
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00009.safetensors",
721
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
722
+ "model.layers.7.post_feedforward_layernorm.weight": "model-00002-of-00009.safetensors",
723
+ "model.layers.7.pre_feedforward_layernorm.weight": "model-00002-of-00009.safetensors",
724
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
725
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
726
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
727
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
728
+ "model.layers.8.block_sparse_moe.experts.0.down_proj.weight": "model-00003-of-00009.safetensors",
729
+ "model.layers.8.block_sparse_moe.experts.0.gate_proj.weight": "model-00003-of-00009.safetensors",
730
+ "model.layers.8.block_sparse_moe.experts.0.up_proj.weight": "model-00003-of-00009.safetensors",
731
+ "model.layers.8.block_sparse_moe.experts.1.down_proj.weight": "model-00003-of-00009.safetensors",
732
+ "model.layers.8.block_sparse_moe.experts.1.gate_proj.weight": "model-00003-of-00009.safetensors",
733
+ "model.layers.8.block_sparse_moe.experts.1.up_proj.weight": "model-00003-of-00009.safetensors",
734
+ "model.layers.8.block_sparse_moe.experts.2.down_proj.weight": "model-00003-of-00009.safetensors",
735
+ "model.layers.8.block_sparse_moe.experts.2.gate_proj.weight": "model-00003-of-00009.safetensors",
736
+ "model.layers.8.block_sparse_moe.experts.2.up_proj.weight": "model-00003-of-00009.safetensors",
737
+ "model.layers.8.block_sparse_moe.gate.weight": "model-00003-of-00009.safetensors",
738
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00009.safetensors",
739
+ "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
740
+ "model.layers.8.post_feedforward_layernorm.weight": "model-00003-of-00009.safetensors",
741
+ "model.layers.8.pre_feedforward_layernorm.weight": "model-00003-of-00009.safetensors",
742
+ "model.layers.8.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
743
+ "model.layers.8.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
744
+ "model.layers.8.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
745
+ "model.layers.8.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
746
+ "model.layers.9.block_sparse_moe.experts.0.down_proj.weight": "model-00003-of-00009.safetensors",
747
+ "model.layers.9.block_sparse_moe.experts.0.gate_proj.weight": "model-00003-of-00009.safetensors",
748
+ "model.layers.9.block_sparse_moe.experts.0.up_proj.weight": "model-00003-of-00009.safetensors",
749
+ "model.layers.9.block_sparse_moe.experts.1.down_proj.weight": "model-00003-of-00009.safetensors",
750
+ "model.layers.9.block_sparse_moe.experts.1.gate_proj.weight": "model-00003-of-00009.safetensors",
751
+ "model.layers.9.block_sparse_moe.experts.1.up_proj.weight": "model-00003-of-00009.safetensors",
752
+ "model.layers.9.block_sparse_moe.experts.2.down_proj.weight": "model-00003-of-00009.safetensors",
753
+ "model.layers.9.block_sparse_moe.experts.2.gate_proj.weight": "model-00003-of-00009.safetensors",
754
+ "model.layers.9.block_sparse_moe.experts.2.up_proj.weight": "model-00003-of-00009.safetensors",
755
+ "model.layers.9.block_sparse_moe.gate.weight": "model-00003-of-00009.safetensors",
756
+ "model.layers.9.input_layernorm.weight": "model-00003-of-00009.safetensors",
757
+ "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
758
+ "model.layers.9.post_feedforward_layernorm.weight": "model-00003-of-00009.safetensors",
759
+ "model.layers.9.pre_feedforward_layernorm.weight": "model-00003-of-00009.safetensors",
760
+ "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
761
+ "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
762
+ "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
763
+ "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
764
+ "model.norm.weight": "model-00009-of-00009.safetensors"
765
+ }
766
+ }
modeling_gemma2moe.py ADDED
@@ -0,0 +1,753 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The HuggingFace Inc. team and Gemma2MoE Contributors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch Gemma2MoE model."""
16
+
17
+ import math
18
+ from typing import List, Optional, Tuple, Union
19
+
20
+ import torch
21
+ import torch.nn.functional as F
22
+ import torch.utils.checkpoint
23
+ from torch import nn
24
+ from torch.nn import CrossEntropyLoss
25
+
26
+ from transformers.activations import ACT2FN
27
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
28
+ from transformers.modeling_outputs import MoeModelOutputWithPast, MoeCausalLMOutputWithPast
29
+ from transformers.modeling_utils import PreTrainedModel
30
+ from transformers.generation import GenerationMixin
31
+ from transformers.utils import (
32
+ add_start_docstrings,
33
+ add_start_docstrings_to_model_forward,
34
+ logging,
35
+ replace_return_docstrings,
36
+ )
37
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
38
+
39
+ from .configuration_gemma2moe import Gemma2MoeConfig
40
+
41
+ logger = logging.get_logger(__name__)
42
+
43
+ _CONFIG_FOR_DOC = "Gemma2MoeConfig"
44
+
45
+ # --- Auxiliary Loss & Router Functions ---
46
+
47
+ def load_balancing_loss_func(gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2) -> float:
48
+ r"""
49
+ Computes auxiliary load balancing loss as in Switch Transformer.
50
+ """
51
+ if gate_logits is None or not isinstance(gate_logits, torch.Tensor):
52
+ return 0.0
53
+
54
+ # gate_logits: [batch_size * seq_len, num_experts] assumed flattened or [batch, seq, experts]
55
+ if gate_logits.dim() == 3:
56
+ gate_logits = gate_logits.view(-1, gate_logits.shape[-1])
57
+
58
+ routing_weights = torch.softmax(gate_logits, dim=-1)
59
+
60
+ # top_k indices
61
+ _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
62
+
63
+ # expert_mask: [num_tokens, num_experts]
64
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
65
+ if expert_mask.dim() == 3:
66
+ expert_mask = expert_mask.sum(dim=1) # Sum over k selected experts
67
+
68
+ # Normalize to get fraction of tokens per expert
69
+ tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
70
+
71
+ # Mean probability per expert
72
+ router_prob_per_expert = torch.mean(routing_weights, dim=0)
73
+
74
+ # Loss = N * sum(f_i * P_i)
75
+ overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert) * num_experts
76
+ return overall_loss
77
+
78
+
79
+ # --- Gemma 2 Components ---
80
+
81
+ class Gemma2RMSNorm(nn.Module):
82
+ def __init__(self, dim: int, eps: float = 1e-6):
83
+ super().__init__()
84
+ self.eps = eps
85
+ self.weight = nn.Parameter(torch.zeros(dim))
86
+
87
+ def _norm(self, x):
88
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
89
+
90
+ def forward(self, x):
91
+ output = self._norm(x.float())
92
+ # Gemma 2 signature: output * (1 + weight)
93
+ # Casting back to input dtype
94
+ output = output * (1.0 + self.weight.float())
95
+ return output.type_as(x)
96
+
97
+
98
+ class Gemma2RotaryEmbedding(nn.Module):
99
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
100
+ super().__init__()
101
+ self.dim = dim
102
+ self.max_position_embeddings = max_position_embeddings
103
+ self.base = base
104
+ self.register_buffer("inv_freq", None, persistent=False)
105
+
106
+ @torch.no_grad()
107
+ def forward(self, x, position_ids, seq_len=None):
108
+ # x: [bs, num_attention_heads, seq_len, head_size]
109
+ if self.inv_freq is None:
110
+ self.inv_freq = 1.0 / (
111
+ self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
112
+ )
113
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
114
+ position_ids_expanded = position_ids[:, None, :].float()
115
+
116
+ # Use float32 for RoPE calculation to maintain precision
117
+ with torch.autocast(device_type=x.device.type, enabled=False):
118
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
119
+ emb = torch.cat((freqs, freqs), dim=-1)
120
+ cos = emb.cos()
121
+ sin = emb.sin()
122
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
123
+
124
+
125
+ def rotate_half(x):
126
+ """Rotates half the hidden dims of the input."""
127
+ x1 = x[..., : x.shape[-1] // 2]
128
+ x2 = x[..., x.shape[-1] // 2 :]
129
+ return torch.cat((-x2, x1), dim=-1)
130
+
131
+
132
+ def apply_rotary_pos_emb(q, k, cos, sin):
133
+ """Applies Rotary Position Embedding to the query and key tensors."""
134
+ cos = cos.unsqueeze(1) # [bs, 1, seq_len, head_dim]
135
+ sin = sin.unsqueeze(1)
136
+ q_embed = (q * cos) + (rotate_half(q) * sin)
137
+ k_embed = (k * cos) + (rotate_half(k) * sin)
138
+ return q_embed, k_embed
139
+
140
+
141
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
142
+ """
143
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
144
+ Used for Grouped Query Attention (GQA).
145
+ """
146
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
147
+ if n_rep == 1:
148
+ return hidden_states
149
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
150
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
151
+
152
+
153
+ class Gemma2Attention(nn.Module):
154
+ """
155
+ Multi-headed attention with Soft-capping, Sliding Window and GQA.
156
+ """
157
+ def __init__(self, config: Gemma2MoeConfig, layer_idx: Optional[int] = None):
158
+ super().__init__()
159
+ self.config = config
160
+ self.layer_idx = layer_idx
161
+
162
+ self.attention_dropout = config.attention_dropout
163
+ self.hidden_size = config.hidden_size
164
+ self.num_heads = config.num_attention_heads
165
+ self.head_dim = config.head_dim
166
+ self.num_key_value_heads = config.num_key_value_heads
167
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
168
+ self.max_position_embeddings = config.max_position_embeddings
169
+ self.rope_theta = config.rope_theta
170
+ self.is_causal = True
171
+
172
+ # Gemma 2 scaling specific
173
+ self.scaling = config.query_pre_attn_scalar ** -0.5
174
+
175
+ # Soft capping parameter
176
+ self.attn_logit_soft_capping = config.attn_logit_soft_capping
177
+
178
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
179
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
180
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
181
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
182
+
183
+ self.rotary_emb = Gemma2RotaryEmbedding(
184
+ self.head_dim,
185
+ max_position_embeddings=self.max_position_embeddings,
186
+ base=self.rope_theta,
187
+ )
188
+ self.sliding_window = config.sliding_window
189
+
190
+ def forward(
191
+ self,
192
+ hidden_states: torch.Tensor,
193
+ attention_mask: Optional[torch.Tensor] = None,
194
+ position_ids: Optional[torch.LongTensor] = None,
195
+ past_key_value: Optional[Cache] = None,
196
+ output_attentions: bool = False,
197
+ use_cache: bool = False,
198
+ cache_position: Optional[torch.LongTensor] = None,
199
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
200
+ bsz, q_len, _ = hidden_states.size()
201
+
202
+ query_states = self.q_proj(hidden_states)
203
+ key_states = self.k_proj(hidden_states)
204
+ value_states = self.v_proj(hidden_states)
205
+
206
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
207
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
208
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
209
+
210
+ cos, sin = self.rotary_emb(value_states, position_ids=position_ids, seq_len=None)
211
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
212
+
213
+ if past_key_value is not None:
214
+ # cache_position for static cache, legacy for dynamic
215
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position, "sliding_window": self.sliding_window}
216
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
217
+
218
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
219
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
220
+
221
+ # Scaled Dot Product Calculation
222
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling
223
+
224
+ # Logit Soft Capping
225
+ if self.attn_logit_soft_capping is not None:
226
+ attn_weights = attn_weights / self.attn_logit_soft_capping
227
+ attn_weights = torch.tanh(attn_weights)
228
+ attn_weights = attn_weights * self.attn_logit_soft_capping
229
+
230
+ if attention_mask is not None:
231
+ # Mask should be broadcastable
232
+ attn_weights = attn_weights + attention_mask
233
+
234
+ # Softmax and Dropout
235
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
236
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
237
+
238
+ attn_output = torch.matmul(attn_weights, value_states)
239
+
240
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
241
+ raise ValueError(
242
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
243
+ f" {attn_output.size()}"
244
+ )
245
+
246
+ attn_output = attn_output.transpose(1, 2).contiguous()
247
+ attn_output = attn_output.view(bsz, q_len, -1)
248
+ attn_output = self.o_proj(attn_output)
249
+
250
+ if not output_attentions:
251
+ attn_weights = None
252
+
253
+ return attn_output, attn_weights, past_key_value
254
+
255
+
256
+ # --- Expert & MoE Block ---
257
+
258
+ class Gemma2MLP(nn.Module):
259
+ """
260
+ Gemma 2 MLP: Gated GELU Tanh
261
+ """
262
+ def __init__(self, config):
263
+ super().__init__()
264
+ self.config = config
265
+ self.hidden_size = config.hidden_size
266
+ self.intermediate_size = config.intermediate_size
267
+
268
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
269
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
270
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
271
+ self.act_fn = ACT2FN[config.hidden_act]
272
+
273
+ def forward(self, x):
274
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
275
+
276
+
277
+ class Gemma2MoeBlock(nn.Module):
278
+ """
279
+ Sparse MoE Block for Gemma 2.
280
+ Uses Top-k gating and processes selected tokens through experts.
281
+ """
282
+ def __init__(self, config: Gemma2MoeConfig):
283
+ super().__init__()
284
+ self.hidden_dim = config.hidden_size
285
+ self.num_experts = config.num_local_experts
286
+ self.top_k = config.num_experts_per_tok
287
+ self.jitter_noise = config.router_jitter_noise
288
+
289
+ self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
290
+ self.experts = nn.ModuleList([Gemma2MLP(config) for _ in range(self.num_experts)])
291
+
292
+ def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
293
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
294
+ hidden_states_flat = hidden_states.view(-1, hidden_dim)
295
+
296
+ # Router Logits
297
+ router_logits = self.gate(hidden_states_flat)
298
+
299
+ if self.training and self.jitter_noise > 0:
300
+ router_logits += torch.empty_like(router_logits).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
301
+
302
+ routing_weights = F.softmax(router_logits, dim=1)
303
+ topk_weight, topk_idx = torch.topk(routing_weights, self.top_k, dim=-1, sorted=False)
304
+
305
+ # Normalize weights
306
+ topk_weight /= topk_weight.sum(dim=-1, keepdim=True)
307
+ topk_weight = topk_weight.to(hidden_states.dtype)
308
+
309
+ # Routing process
310
+ # Using a loop here for clarity and simplicity in Python.
311
+ # For extreme performance, Triton or CUDA kernels should be used.
312
+ final_hidden_states = torch.zeros_like(hidden_states_flat)
313
+
314
+ # Flatten indices to handle batching easier
315
+ flat_topk_idx = topk_idx.view(-1)
316
+
317
+ # We need to process each expert
318
+ for i, expert in enumerate(self.experts):
319
+ # Find tokens assigned to this expert (in any of the top-k slots)
320
+ # This is a bit inefficient in pure PyTorch but ensures correctness without custom kernels
321
+ # Create a mask for tokens where this expert is selected
322
+ expert_mask = (topk_idx == i)
323
+
324
+ if expert_mask.any():
325
+ # We need to collect inputs, process, and scatter back
326
+ # This logic handles cases where an expert is selected multiple times (unlikely in top-k but possible conceptually)
327
+ # But typically top-k implies distinct experts.
328
+
329
+ # Get indices where this expert is used
330
+ batch_indices, k_indices = torch.where(expert_mask)
331
+
332
+ # Extract inputs
333
+ inp = hidden_states_flat[batch_indices]
334
+
335
+ # Forward pass
336
+ out = expert(inp)
337
+
338
+ # Weighting: We need the weight associated with this selection
339
+ weights = topk_weight[batch_indices, k_indices]
340
+
341
+ # Accumulate result
342
+ # Ideally, scatter_add, but here we iterate.
343
+ # Since batch_indices might repeat if we allowed k repetitions (we don't usually),
344
+ # standard scatter_add_ is safer.
345
+
346
+ weighted_out = out * weights.unsqueeze(-1)
347
+ final_hidden_states.index_add_(0, batch_indices, weighted_out)
348
+
349
+ final_hidden_states = final_hidden_states.view(batch_size, sequence_length, hidden_dim)
350
+ return final_hidden_states, router_logits
351
+
352
+
353
+ # --- Decoder Layer (Strict Gemma 2 Topology) ---
354
+
355
+ class Gemma2MoeDecoderLayer(nn.Module):
356
+ def __init__(self, config: Gemma2MoeConfig, layer_idx: int):
357
+ super().__init__()
358
+ self.hidden_size = config.hidden_size
359
+
360
+ self.self_attn = Gemma2Attention(config, layer_idx)
361
+ self.block_sparse_moe = Gemma2MoeBlock(config)
362
+
363
+ # Gemma 2 uses 4 specific RMSNorms per layer
364
+ self.input_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
365
+ self.post_attention_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
366
+ self.pre_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
367
+ self.post_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
368
+
369
+ def forward(
370
+ self,
371
+ hidden_states: torch.Tensor,
372
+ attention_mask: Optional[torch.Tensor] = None,
373
+ position_ids: Optional[torch.LongTensor] = None,
374
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
375
+ output_attentions: Optional[bool] = False,
376
+ output_router_logits: Optional[bool] = False,
377
+ use_cache: Optional[bool] = False,
378
+ cache_position: Optional[torch.LongTensor] = None,
379
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
380
+
381
+ # --- Attention Path ---
382
+ residual = hidden_states
383
+ hidden_states = self.input_layernorm(hidden_states)
384
+
385
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
386
+ hidden_states=hidden_states,
387
+ attention_mask=attention_mask,
388
+ position_ids=position_ids,
389
+ past_key_value=past_key_value,
390
+ output_attentions=output_attentions,
391
+ use_cache=use_cache,
392
+ cache_position=cache_position,
393
+ )
394
+
395
+ hidden_states = self.post_attention_layernorm(hidden_states)
396
+ hidden_states = residual + hidden_states # Residual Connection
397
+
398
+ # --- MoE Path ---
399
+ residual = hidden_states
400
+ hidden_states = self.pre_feedforward_layernorm(hidden_states)
401
+
402
+ # Using MoE instead of standard MLP
403
+ hidden_states, router_logits = self.block_sparse_moe(hidden_states)
404
+
405
+ hidden_states = self.post_feedforward_layernorm(hidden_states)
406
+ hidden_states = residual + hidden_states # Residual Connection
407
+
408
+ outputs = (hidden_states,)
409
+
410
+ if output_attentions:
411
+ outputs += (self_attn_weights,)
412
+
413
+ if use_cache:
414
+ outputs += (present_key_value,)
415
+
416
+ if output_router_logits:
417
+ outputs += (router_logits,)
418
+
419
+ return outputs
420
+
421
+
422
+ # --- PreTrained Model Wrappers ---
423
+
424
+ class Gemma2MoePreTrainedModel(PreTrainedModel):
425
+ config_class = Gemma2MoeConfig
426
+ base_model_prefix = "model"
427
+ supports_gradient_checkpointing = True
428
+ _no_split_modules = ["Gemma2MoeDecoderLayer"]
429
+ _skip_keys_device_placement = ["past_key_values"]
430
+ _supports_flash_attn_2 = False # Keeping SDPA for broad compatibility logic implemented above
431
+ _supports_sdpa = True
432
+ _supports_cache_class = True
433
+
434
+ def _init_weights(self, module):
435
+ std = self.config.initializer_range
436
+ if isinstance(module, nn.Linear):
437
+ module.weight.data.normal_(mean=0.0, std=std)
438
+ if module.bias is not None:
439
+ module.bias.data.zero_()
440
+ elif isinstance(module, nn.Embedding):
441
+ module.weight.data.normal_(mean=0.0, std=std)
442
+ if module.padding_idx is not None:
443
+ module.weight.data[module.padding_idx].zero_()
444
+
445
+
446
+ class Gemma2MoeModel(Gemma2MoePreTrainedModel):
447
+ def __init__(self, config: Gemma2MoeConfig):
448
+ super().__init__(config)
449
+ self.padding_idx = config.pad_token_id
450
+ self.vocab_size = config.vocab_size
451
+
452
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
453
+ self.layers = nn.ModuleList(
454
+ [Gemma2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
455
+ )
456
+ self.norm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
457
+ self.gradient_checkpointing = False
458
+
459
+ # Initialize weights and apply final processing
460
+ self.post_init()
461
+
462
+ def get_input_embeddings(self):
463
+ return self.embed_tokens
464
+
465
+ def set_input_embeddings(self, value):
466
+ self.embed_tokens = value
467
+
468
+ def forward(
469
+ self,
470
+ input_ids: torch.LongTensor = None,
471
+ attention_mask: Optional[torch.Tensor] = None,
472
+ position_ids: Optional[torch.LongTensor] = None,
473
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
474
+ inputs_embeds: Optional[torch.FloatTensor] = None,
475
+ use_cache: Optional[bool] = None,
476
+ output_attentions: Optional[bool] = None,
477
+ output_hidden_states: Optional[bool] = None,
478
+ output_router_logits: Optional[bool] = None,
479
+ return_dict: Optional[bool] = None,
480
+ cache_position: Optional[torch.LongTensor] = None,
481
+ ) -> Union[Tuple, MoeModelOutputWithPast]:
482
+
483
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
484
+ output_router_logits = output_router_logits if output_router_logits is not None else self.config.output_router_logits
485
+ output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
486
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
487
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
488
+
489
+ if (input_ids is None) ^ (inputs_embeds is not None):
490
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
491
+
492
+ if inputs_embeds is None:
493
+ inputs_embeds = self.embed_tokens(input_ids)
494
+
495
+ if use_cache and past_key_values is None:
496
+ past_key_values = DynamicCache()
497
+
498
+ if cache_position is None:
499
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
500
+ cache_position = torch.arange(
501
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
502
+ )
503
+
504
+ if position_ids is None:
505
+ position_ids = cache_position.unsqueeze(0)
506
+
507
+ # 4D Attention Mask Creation (handles Sliding Window if config requests it)
508
+ causal_mask = _prepare_4d_causal_attention_mask(
509
+ attention_mask,
510
+ (inputs_embeds.shape[0], inputs_embeds.shape[1]),
511
+ inputs_embeds,
512
+ past_key_values.get_seq_length() if past_key_values is not None else 0,
513
+ sliding_window=self.config.sliding_window,
514
+ )
515
+
516
+ # Normalization (Gemma 2 embedding scaling)
517
+ normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=inputs_embeds.dtype)
518
+ hidden_states = inputs_embeds * normalizer
519
+
520
+ all_hidden_states = () if output_hidden_states else None
521
+ all_router_logits = () if output_router_logits else None
522
+
523
+ for decoder_layer in self.layers:
524
+ if output_hidden_states:
525
+ all_hidden_states += (hidden_states,)
526
+
527
+ if self.gradient_checkpointing and self.training:
528
+ layer_outputs = self._gradient_checkpointing_func(
529
+ decoder_layer.__call__,
530
+ hidden_states,
531
+ causal_mask,
532
+ position_ids,
533
+ past_key_values,
534
+ output_attentions,
535
+ output_router_logits,
536
+ use_cache,
537
+ cache_position,
538
+ )
539
+ else:
540
+ layer_outputs = decoder_layer(
541
+ hidden_states,
542
+ attention_mask=causal_mask,
543
+ position_ids=position_ids,
544
+ past_key_value=past_key_values,
545
+ output_attentions=output_attentions,
546
+ output_router_logits=output_router_logits,
547
+ use_cache=use_cache,
548
+ cache_position=cache_position,
549
+ )
550
+
551
+ hidden_states = layer_outputs[0]
552
+
553
+ if output_router_logits:
554
+ all_router_logits += (layer_outputs[-1],)
555
+
556
+ hidden_states = self.norm(hidden_states)
557
+
558
+ if output_hidden_states:
559
+ all_hidden_states += (hidden_states,)
560
+
561
+ if not return_dict:
562
+ return tuple(v for v in [hidden_states, past_key_values, all_hidden_states, all_router_logits] if v is not None)
563
+
564
+ return MoeModelOutputWithPast(
565
+ last_hidden_state=hidden_states,
566
+ past_key_values=past_key_values,
567
+ hidden_states=all_hidden_states,
568
+ router_logits=all_router_logits,
569
+ )
570
+
571
+
572
+ class Gemma2MoeForCausalLM(Gemma2MoePreTrainedModel, GenerationMixin):
573
+ _tied_weights_keys = ["lm_head.weight"]
574
+
575
+ def __init__(self, config):
576
+ super().__init__(config)
577
+ self.model = Gemma2MoeModel(config)
578
+ self.vocab_size = config.vocab_size
579
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
580
+ self.router_aux_loss_coef = config.router_aux_loss_coef
581
+ self.num_experts = config.num_local_experts
582
+ self.num_experts_per_tok = config.num_experts_per_tok
583
+
584
+ # Initialize weights and apply final processing
585
+ self.post_init()
586
+
587
+ def get_input_embeddings(self):
588
+ return self.model.embed_tokens
589
+
590
+ def set_input_embeddings(self, value):
591
+ self.model.embed_tokens = value
592
+
593
+ def get_output_embeddings(self):
594
+ return self.lm_head
595
+
596
+ def set_output_embeddings(self, new_embeddings):
597
+ self.lm_head = new_embeddings
598
+
599
+ def forward(
600
+ self,
601
+ input_ids: torch.LongTensor = None,
602
+ attention_mask: Optional[torch.Tensor] = None,
603
+ position_ids: Optional[torch.LongTensor] = None,
604
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
605
+ inputs_embeds: Optional[torch.FloatTensor] = None,
606
+ labels: Optional[torch.LongTensor] = None,
607
+ use_cache: Optional[bool] = None,
608
+ output_attentions: Optional[bool] = None,
609
+ output_hidden_states: Optional[bool] = None,
610
+ output_router_logits: Optional[bool] = None,
611
+ return_dict: Optional[bool] = None,
612
+ cache_position: Optional[torch.LongTensor] = None,
613
+ ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
614
+
615
+ output_router_logits = output_router_logits if output_router_logits is not None else self.config.output_router_logits
616
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
617
+
618
+ outputs = self.model(
619
+ input_ids=input_ids,
620
+ attention_mask=attention_mask,
621
+ position_ids=position_ids,
622
+ past_key_values=past_key_values,
623
+ inputs_embeds=inputs_embeds,
624
+ use_cache=use_cache,
625
+ output_attentions=output_attentions,
626
+ output_hidden_states=output_hidden_states,
627
+ output_router_logits=output_router_logits,
628
+ return_dict=return_dict,
629
+ cache_position=cache_position,
630
+ )
631
+
632
+ hidden_states = outputs[0]
633
+ logits = self.lm_head(hidden_states)
634
+
635
+ # Final Soft Capping (Gemma 2 Specific feature)
636
+ # tanh(logits / cap) * cap
637
+ if self.config.logit_soft_capping is not None:
638
+ logits = logits / self.config.logit_soft_capping
639
+ logits = torch.tanh(logits)
640
+ logits = logits * self.config.logit_soft_capping
641
+
642
+ logits = logits.float()
643
+
644
+ loss = None
645
+ if labels is not None:
646
+ shift_logits = logits[..., :-1, :].contiguous()
647
+ shift_labels = labels[..., 1:].contiguous()
648
+ loss_fct = CrossEntropyLoss()
649
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
650
+ shift_labels = shift_labels.view(-1)
651
+ loss = loss_fct(shift_logits, shift_labels)
652
+
653
+ aux_loss = None
654
+ if output_router_logits:
655
+ aux_loss = load_balancing_loss_func(
656
+ outputs.router_logits if return_dict else outputs[-1],
657
+ self.num_experts,
658
+ self.num_experts_per_tok,
659
+ )
660
+ if labels is not None:
661
+ loss += self.router_aux_loss_coef * aux_loss
662
+
663
+ if not return_dict:
664
+ output = (logits,) + outputs[1:]
665
+ if output_router_logits:
666
+ output = (aux_loss,) + output
667
+ return (loss,) + output if loss is not None else output
668
+
669
+ return MoeCausalLMOutputWithPast(
670
+ loss=loss,
671
+ aux_loss=aux_loss,
672
+ logits=logits,
673
+ past_key_values=outputs.past_key_values,
674
+ hidden_states=outputs.hidden_states,
675
+ attentions=outputs.attentions,
676
+ router_logits=outputs.router_logits,
677
+ )
678
+
679
+ def prepare_inputs_for_generation(
680
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
681
+ ):
682
+ past_length = 0
683
+ if past_key_values is not None:
684
+ if isinstance(past_key_values, Cache):
685
+ past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
686
+
687
+ # --- HATA DÜZELTMESİ BAŞLANGICI ---
688
+ # get_max_length metodunun varlığını kontrol ediyoruz
689
+ if hasattr(past_key_values, "get_max_length") and past_key_values.get_max_length() is not None:
690
+ max_cache_length = torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
691
+ else:
692
+ max_cache_length = None
693
+ # --- HATA DÜZELTMESİ BİTİŞİ ---
694
+
695
+ cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
696
+
697
+ # Legacy Cache (Tuple formatı için)
698
+ else:
699
+ past_length = past_key_values[0][0].shape[2]
700
+ max_cache_length = None
701
+
702
+ # Keep only the unprocessed tokens:
703
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
704
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
705
+ elif past_length < input_ids.shape[1]:
706
+ input_ids = input_ids[:, past_length:]
707
+
708
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
709
+ if (
710
+ max_cache_length is not None
711
+ and attention_mask is not None
712
+ and cache_length + input_ids.shape[1] > max_cache_length
713
+ ):
714
+ attention_mask = attention_mask[:, -max_cache_length:]
715
+
716
+ position_ids = kwargs.get("position_ids", None)
717
+ if attention_mask is not None and position_ids is None:
718
+ # create position_ids on the fly for batch generation
719
+ position_ids = attention_mask.long().cumsum(-1) - 1
720
+ position_ids.masked_fill_(attention_mask == 0, 1)
721
+ if past_key_values:
722
+ position_ids = position_ids[:, -input_ids.shape[1] :]
723
+
724
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
725
+ if inputs_embeds is not None and past_key_values is None:
726
+ model_inputs = {"inputs_embeds": inputs_embeds}
727
+ else:
728
+ model_inputs = {"input_ids": input_ids}
729
+
730
+ if cache_position is None:
731
+ # Inputs embeds veya input_ids hangisi varsa onun shape'ini al
732
+ input_len = model_inputs.get("input_ids", inputs_embeds).shape[1]
733
+ cache_position = torch.arange(past_length, past_length + input_len, device=input_ids.device)
734
+
735
+ model_inputs.update(
736
+ {
737
+ "position_ids": position_ids,
738
+ "cache_position": cache_position,
739
+ "past_key_values": past_key_values,
740
+ "use_cache": kwargs.get("use_cache"),
741
+ "attention_mask": attention_mask,
742
+ }
743
+ )
744
+ return model_inputs
745
+
746
+ @staticmethod
747
+ def _reorder_cache(past_key_values, beam_idx):
748
+ reordered_past = ()
749
+ for layer_past in past_key_values:
750
+ reordered_past += (
751
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
752
+ )
753
+ return reordered_past
special_tokens_map.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<start_of_turn>",
4
+ "<end_of_turn>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "<bos>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<end_of_turn>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": {
21
+ "content": "<pad>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ },
27
+ "unk_token": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a9dead7ec8422d57df8e480a53b45ea76e22cf7afc3d4b64587f8ea48aacbc8
3
+ size 34363130
tokenizer_config.json ADDED
@@ -0,0 +1,2015 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<pad>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<eos>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<bos>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "4": {
38
+ "content": "<mask>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": false
44
+ },
45
+ "5": {
46
+ "content": "<2mass>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": false
52
+ },
53
+ "6": {
54
+ "content": "[@BOS@]",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": false
60
+ },
61
+ "7": {
62
+ "content": "<think>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": false
68
+ },
69
+ "8": {
70
+ "content": "</think>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": false
76
+ },
77
+ "9": {
78
+ "content": "<unused2>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": false
84
+ },
85
+ "10": {
86
+ "content": "<unused3>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": false
92
+ },
93
+ "11": {
94
+ "content": "<unused4>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": false
100
+ },
101
+ "12": {
102
+ "content": "<unused5>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": false
108
+ },
109
+ "13": {
110
+ "content": "<unused6>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": false
116
+ },
117
+ "14": {
118
+ "content": "<unused7>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "15": {
126
+ "content": "<unused8>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "16": {
134
+ "content": "<unused9>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "17": {
142
+ "content": "<unused10>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "18": {
150
+ "content": "<unused11>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "19": {
158
+ "content": "<unused12>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "20": {
166
+ "content": "<unused13>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "21": {
174
+ "content": "<unused14>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "22": {
182
+ "content": "<unused15>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "23": {
190
+ "content": "<unused16>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "24": {
198
+ "content": "<unused17>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "25": {
206
+ "content": "<unused18>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ },
213
+ "26": {
214
+ "content": "<unused19>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": false
220
+ },
221
+ "27": {
222
+ "content": "<unused20>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": false
228
+ },
229
+ "28": {
230
+ "content": "<unused21>",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": false
236
+ },
237
+ "29": {
238
+ "content": "<unused22>",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": false
244
+ },
245
+ "30": {
246
+ "content": "<unused23>",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": false
252
+ },
253
+ "31": {
254
+ "content": "<unused24>",
255
+ "lstrip": false,
256
+ "normalized": false,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": false
260
+ },
261
+ "32": {
262
+ "content": "<unused25>",
263
+ "lstrip": false,
264
+ "normalized": false,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": false
268
+ },
269
+ "33": {
270
+ "content": "<unused26>",
271
+ "lstrip": false,
272
+ "normalized": false,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": false
276
+ },
277
+ "34": {
278
+ "content": "<unused27>",
279
+ "lstrip": false,
280
+ "normalized": false,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": false
284
+ },
285
+ "35": {
286
+ "content": "<unused28>",
287
+ "lstrip": false,
288
+ "normalized": false,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": false
292
+ },
293
+ "36": {
294
+ "content": "<unused29>",
295
+ "lstrip": false,
296
+ "normalized": false,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": false
300
+ },
301
+ "37": {
302
+ "content": "<unused30>",
303
+ "lstrip": false,
304
+ "normalized": false,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": false
308
+ },
309
+ "38": {
310
+ "content": "<unused31>",
311
+ "lstrip": false,
312
+ "normalized": false,
313
+ "rstrip": false,
314
+ "single_word": false,
315
+ "special": false
316
+ },
317
+ "39": {
318
+ "content": "<unused32>",
319
+ "lstrip": false,
320
+ "normalized": false,
321
+ "rstrip": false,
322
+ "single_word": false,
323
+ "special": false
324
+ },
325
+ "40": {
326
+ "content": "<unused33>",
327
+ "lstrip": false,
328
+ "normalized": false,
329
+ "rstrip": false,
330
+ "single_word": false,
331
+ "special": false
332
+ },
333
+ "41": {
334
+ "content": "<unused34>",
335
+ "lstrip": false,
336
+ "normalized": false,
337
+ "rstrip": false,
338
+ "single_word": false,
339
+ "special": false
340
+ },
341
+ "42": {
342
+ "content": "<unused35>",
343
+ "lstrip": false,
344
+ "normalized": false,
345
+ "rstrip": false,
346
+ "single_word": false,
347
+ "special": false
348
+ },
349
+ "43": {
350
+ "content": "<unused36>",
351
+ "lstrip": false,
352
+ "normalized": false,
353
+ "rstrip": false,
354
+ "single_word": false,
355
+ "special": false
356
+ },
357
+ "44": {
358
+ "content": "<unused37>",
359
+ "lstrip": false,
360
+ "normalized": false,
361
+ "rstrip": false,
362
+ "single_word": false,
363
+ "special": false
364
+ },
365
+ "45": {
366
+ "content": "<unused38>",
367
+ "lstrip": false,
368
+ "normalized": false,
369
+ "rstrip": false,
370
+ "single_word": false,
371
+ "special": false
372
+ },
373
+ "46": {
374
+ "content": "<unused39>",
375
+ "lstrip": false,
376
+ "normalized": false,
377
+ "rstrip": false,
378
+ "single_word": false,
379
+ "special": false
380
+ },
381
+ "47": {
382
+ "content": "<unused40>",
383
+ "lstrip": false,
384
+ "normalized": false,
385
+ "rstrip": false,
386
+ "single_word": false,
387
+ "special": false
388
+ },
389
+ "48": {
390
+ "content": "<unused41>",
391
+ "lstrip": false,
392
+ "normalized": false,
393
+ "rstrip": false,
394
+ "single_word": false,
395
+ "special": false
396
+ },
397
+ "49": {
398
+ "content": "<unused42>",
399
+ "lstrip": false,
400
+ "normalized": false,
401
+ "rstrip": false,
402
+ "single_word": false,
403
+ "special": false
404
+ },
405
+ "50": {
406
+ "content": "<unused43>",
407
+ "lstrip": false,
408
+ "normalized": false,
409
+ "rstrip": false,
410
+ "single_word": false,
411
+ "special": false
412
+ },
413
+ "51": {
414
+ "content": "<unused44>",
415
+ "lstrip": false,
416
+ "normalized": false,
417
+ "rstrip": false,
418
+ "single_word": false,
419
+ "special": false
420
+ },
421
+ "52": {
422
+ "content": "<unused45>",
423
+ "lstrip": false,
424
+ "normalized": false,
425
+ "rstrip": false,
426
+ "single_word": false,
427
+ "special": false
428
+ },
429
+ "53": {
430
+ "content": "<unused46>",
431
+ "lstrip": false,
432
+ "normalized": false,
433
+ "rstrip": false,
434
+ "single_word": false,
435
+ "special": false
436
+ },
437
+ "54": {
438
+ "content": "<unused47>",
439
+ "lstrip": false,
440
+ "normalized": false,
441
+ "rstrip": false,
442
+ "single_word": false,
443
+ "special": false
444
+ },
445
+ "55": {
446
+ "content": "<unused48>",
447
+ "lstrip": false,
448
+ "normalized": false,
449
+ "rstrip": false,
450
+ "single_word": false,
451
+ "special": false
452
+ },
453
+ "56": {
454
+ "content": "<unused49>",
455
+ "lstrip": false,
456
+ "normalized": false,
457
+ "rstrip": false,
458
+ "single_word": false,
459
+ "special": false
460
+ },
461
+ "57": {
462
+ "content": "<unused50>",
463
+ "lstrip": false,
464
+ "normalized": false,
465
+ "rstrip": false,
466
+ "single_word": false,
467
+ "special": false
468
+ },
469
+ "58": {
470
+ "content": "<unused51>",
471
+ "lstrip": false,
472
+ "normalized": false,
473
+ "rstrip": false,
474
+ "single_word": false,
475
+ "special": false
476
+ },
477
+ "59": {
478
+ "content": "<unused52>",
479
+ "lstrip": false,
480
+ "normalized": false,
481
+ "rstrip": false,
482
+ "single_word": false,
483
+ "special": false
484
+ },
485
+ "60": {
486
+ "content": "<unused53>",
487
+ "lstrip": false,
488
+ "normalized": false,
489
+ "rstrip": false,
490
+ "single_word": false,
491
+ "special": false
492
+ },
493
+ "61": {
494
+ "content": "<unused54>",
495
+ "lstrip": false,
496
+ "normalized": false,
497
+ "rstrip": false,
498
+ "single_word": false,
499
+ "special": false
500
+ },
501
+ "62": {
502
+ "content": "<unused55>",
503
+ "lstrip": false,
504
+ "normalized": false,
505
+ "rstrip": false,
506
+ "single_word": false,
507
+ "special": false
508
+ },
509
+ "63": {
510
+ "content": "<unused56>",
511
+ "lstrip": false,
512
+ "normalized": false,
513
+ "rstrip": false,
514
+ "single_word": false,
515
+ "special": false
516
+ },
517
+ "64": {
518
+ "content": "<unused57>",
519
+ "lstrip": false,
520
+ "normalized": false,
521
+ "rstrip": false,
522
+ "single_word": false,
523
+ "special": false
524
+ },
525
+ "65": {
526
+ "content": "<unused58>",
527
+ "lstrip": false,
528
+ "normalized": false,
529
+ "rstrip": false,
530
+ "single_word": false,
531
+ "special": false
532
+ },
533
+ "66": {
534
+ "content": "<unused59>",
535
+ "lstrip": false,
536
+ "normalized": false,
537
+ "rstrip": false,
538
+ "single_word": false,
539
+ "special": false
540
+ },
541
+ "67": {
542
+ "content": "<unused60>",
543
+ "lstrip": false,
544
+ "normalized": false,
545
+ "rstrip": false,
546
+ "single_word": false,
547
+ "special": false
548
+ },
549
+ "68": {
550
+ "content": "<unused61>",
551
+ "lstrip": false,
552
+ "normalized": false,
553
+ "rstrip": false,
554
+ "single_word": false,
555
+ "special": false
556
+ },
557
+ "69": {
558
+ "content": "<unused62>",
559
+ "lstrip": false,
560
+ "normalized": false,
561
+ "rstrip": false,
562
+ "single_word": false,
563
+ "special": false
564
+ },
565
+ "70": {
566
+ "content": "<unused63>",
567
+ "lstrip": false,
568
+ "normalized": false,
569
+ "rstrip": false,
570
+ "single_word": false,
571
+ "special": false
572
+ },
573
+ "71": {
574
+ "content": "<unused64>",
575
+ "lstrip": false,
576
+ "normalized": false,
577
+ "rstrip": false,
578
+ "single_word": false,
579
+ "special": false
580
+ },
581
+ "72": {
582
+ "content": "<unused65>",
583
+ "lstrip": false,
584
+ "normalized": false,
585
+ "rstrip": false,
586
+ "single_word": false,
587
+ "special": false
588
+ },
589
+ "73": {
590
+ "content": "<unused66>",
591
+ "lstrip": false,
592
+ "normalized": false,
593
+ "rstrip": false,
594
+ "single_word": false,
595
+ "special": false
596
+ },
597
+ "74": {
598
+ "content": "<unused67>",
599
+ "lstrip": false,
600
+ "normalized": false,
601
+ "rstrip": false,
602
+ "single_word": false,
603
+ "special": false
604
+ },
605
+ "75": {
606
+ "content": "<unused68>",
607
+ "lstrip": false,
608
+ "normalized": false,
609
+ "rstrip": false,
610
+ "single_word": false,
611
+ "special": false
612
+ },
613
+ "76": {
614
+ "content": "<unused69>",
615
+ "lstrip": false,
616
+ "normalized": false,
617
+ "rstrip": false,
618
+ "single_word": false,
619
+ "special": false
620
+ },
621
+ "77": {
622
+ "content": "<unused70>",
623
+ "lstrip": false,
624
+ "normalized": false,
625
+ "rstrip": false,
626
+ "single_word": false,
627
+ "special": false
628
+ },
629
+ "78": {
630
+ "content": "<unused71>",
631
+ "lstrip": false,
632
+ "normalized": false,
633
+ "rstrip": false,
634
+ "single_word": false,
635
+ "special": false
636
+ },
637
+ "79": {
638
+ "content": "<unused72>",
639
+ "lstrip": false,
640
+ "normalized": false,
641
+ "rstrip": false,
642
+ "single_word": false,
643
+ "special": false
644
+ },
645
+ "80": {
646
+ "content": "<unused73>",
647
+ "lstrip": false,
648
+ "normalized": false,
649
+ "rstrip": false,
650
+ "single_word": false,
651
+ "special": false
652
+ },
653
+ "81": {
654
+ "content": "<unused74>",
655
+ "lstrip": false,
656
+ "normalized": false,
657
+ "rstrip": false,
658
+ "single_word": false,
659
+ "special": false
660
+ },
661
+ "82": {
662
+ "content": "<unused75>",
663
+ "lstrip": false,
664
+ "normalized": false,
665
+ "rstrip": false,
666
+ "single_word": false,
667
+ "special": false
668
+ },
669
+ "83": {
670
+ "content": "<unused76>",
671
+ "lstrip": false,
672
+ "normalized": false,
673
+ "rstrip": false,
674
+ "single_word": false,
675
+ "special": false
676
+ },
677
+ "84": {
678
+ "content": "<unused77>",
679
+ "lstrip": false,
680
+ "normalized": false,
681
+ "rstrip": false,
682
+ "single_word": false,
683
+ "special": false
684
+ },
685
+ "85": {
686
+ "content": "<unused78>",
687
+ "lstrip": false,
688
+ "normalized": false,
689
+ "rstrip": false,
690
+ "single_word": false,
691
+ "special": false
692
+ },
693
+ "86": {
694
+ "content": "<unused79>",
695
+ "lstrip": false,
696
+ "normalized": false,
697
+ "rstrip": false,
698
+ "single_word": false,
699
+ "special": false
700
+ },
701
+ "87": {
702
+ "content": "<unused80>",
703
+ "lstrip": false,
704
+ "normalized": false,
705
+ "rstrip": false,
706
+ "single_word": false,
707
+ "special": false
708
+ },
709
+ "88": {
710
+ "content": "<unused81>",
711
+ "lstrip": false,
712
+ "normalized": false,
713
+ "rstrip": false,
714
+ "single_word": false,
715
+ "special": false
716
+ },
717
+ "89": {
718
+ "content": "<unused82>",
719
+ "lstrip": false,
720
+ "normalized": false,
721
+ "rstrip": false,
722
+ "single_word": false,
723
+ "special": false
724
+ },
725
+ "90": {
726
+ "content": "<unused83>",
727
+ "lstrip": false,
728
+ "normalized": false,
729
+ "rstrip": false,
730
+ "single_word": false,
731
+ "special": false
732
+ },
733
+ "91": {
734
+ "content": "<unused84>",
735
+ "lstrip": false,
736
+ "normalized": false,
737
+ "rstrip": false,
738
+ "single_word": false,
739
+ "special": false
740
+ },
741
+ "92": {
742
+ "content": "<unused85>",
743
+ "lstrip": false,
744
+ "normalized": false,
745
+ "rstrip": false,
746
+ "single_word": false,
747
+ "special": false
748
+ },
749
+ "93": {
750
+ "content": "<unused86>",
751
+ "lstrip": false,
752
+ "normalized": false,
753
+ "rstrip": false,
754
+ "single_word": false,
755
+ "special": false
756
+ },
757
+ "94": {
758
+ "content": "<unused87>",
759
+ "lstrip": false,
760
+ "normalized": false,
761
+ "rstrip": false,
762
+ "single_word": false,
763
+ "special": false
764
+ },
765
+ "95": {
766
+ "content": "<unused88>",
767
+ "lstrip": false,
768
+ "normalized": false,
769
+ "rstrip": false,
770
+ "single_word": false,
771
+ "special": false
772
+ },
773
+ "96": {
774
+ "content": "<unused89>",
775
+ "lstrip": false,
776
+ "normalized": false,
777
+ "rstrip": false,
778
+ "single_word": false,
779
+ "special": false
780
+ },
781
+ "97": {
782
+ "content": "<unused90>",
783
+ "lstrip": false,
784
+ "normalized": false,
785
+ "rstrip": false,
786
+ "single_word": false,
787
+ "special": false
788
+ },
789
+ "98": {
790
+ "content": "<unused91>",
791
+ "lstrip": false,
792
+ "normalized": false,
793
+ "rstrip": false,
794
+ "single_word": false,
795
+ "special": false
796
+ },
797
+ "99": {
798
+ "content": "<unused92>",
799
+ "lstrip": false,
800
+ "normalized": false,
801
+ "rstrip": false,
802
+ "single_word": false,
803
+ "special": false
804
+ },
805
+ "100": {
806
+ "content": "<unused93>",
807
+ "lstrip": false,
808
+ "normalized": false,
809
+ "rstrip": false,
810
+ "single_word": false,
811
+ "special": false
812
+ },
813
+ "101": {
814
+ "content": "<unused94>",
815
+ "lstrip": false,
816
+ "normalized": false,
817
+ "rstrip": false,
818
+ "single_word": false,
819
+ "special": false
820
+ },
821
+ "102": {
822
+ "content": "<unused95>",
823
+ "lstrip": false,
824
+ "normalized": false,
825
+ "rstrip": false,
826
+ "single_word": false,
827
+ "special": false
828
+ },
829
+ "103": {
830
+ "content": "<unused96>",
831
+ "lstrip": false,
832
+ "normalized": false,
833
+ "rstrip": false,
834
+ "single_word": false,
835
+ "special": false
836
+ },
837
+ "104": {
838
+ "content": "<unused97>",
839
+ "lstrip": false,
840
+ "normalized": false,
841
+ "rstrip": false,
842
+ "single_word": false,
843
+ "special": false
844
+ },
845
+ "105": {
846
+ "content": "<unused98>",
847
+ "lstrip": false,
848
+ "normalized": false,
849
+ "rstrip": false,
850
+ "single_word": false,
851
+ "special": false
852
+ },
853
+ "106": {
854
+ "content": "<start_of_turn>",
855
+ "lstrip": false,
856
+ "normalized": false,
857
+ "rstrip": false,
858
+ "single_word": false,
859
+ "special": true
860
+ },
861
+ "107": {
862
+ "content": "<end_of_turn>",
863
+ "lstrip": false,
864
+ "normalized": false,
865
+ "rstrip": false,
866
+ "single_word": false,
867
+ "special": true
868
+ },
869
+ "108": {
870
+ "content": "\n",
871
+ "lstrip": false,
872
+ "normalized": false,
873
+ "rstrip": false,
874
+ "single_word": false,
875
+ "special": false
876
+ },
877
+ "109": {
878
+ "content": "\n\n",
879
+ "lstrip": false,
880
+ "normalized": false,
881
+ "rstrip": false,
882
+ "single_word": false,
883
+ "special": false
884
+ },
885
+ "110": {
886
+ "content": "\n\n\n",
887
+ "lstrip": false,
888
+ "normalized": false,
889
+ "rstrip": false,
890
+ "single_word": false,
891
+ "special": false
892
+ },
893
+ "111": {
894
+ "content": "\n\n\n\n",
895
+ "lstrip": false,
896
+ "normalized": false,
897
+ "rstrip": false,
898
+ "single_word": false,
899
+ "special": false
900
+ },
901
+ "112": {
902
+ "content": "\n\n\n\n\n",
903
+ "lstrip": false,
904
+ "normalized": false,
905
+ "rstrip": false,
906
+ "single_word": false,
907
+ "special": false
908
+ },
909
+ "113": {
910
+ "content": "\n\n\n\n\n\n",
911
+ "lstrip": false,
912
+ "normalized": false,
913
+ "rstrip": false,
914
+ "single_word": false,
915
+ "special": false
916
+ },
917
+ "114": {
918
+ "content": "\n\n\n\n\n\n\n",
919
+ "lstrip": false,
920
+ "normalized": false,
921
+ "rstrip": false,
922
+ "single_word": false,
923
+ "special": false
924
+ },
925
+ "115": {
926
+ "content": "\n\n\n\n\n\n\n\n",
927
+ "lstrip": false,
928
+ "normalized": false,
929
+ "rstrip": false,
930
+ "single_word": false,
931
+ "special": false
932
+ },
933
+ "116": {
934
+ "content": "\n\n\n\n\n\n\n\n\n",
935
+ "lstrip": false,
936
+ "normalized": false,
937
+ "rstrip": false,
938
+ "single_word": false,
939
+ "special": false
940
+ },
941
+ "117": {
942
+ "content": "\n\n\n\n\n\n\n\n\n\n",
943
+ "lstrip": false,
944
+ "normalized": false,
945
+ "rstrip": false,
946
+ "single_word": false,
947
+ "special": false
948
+ },
949
+ "118": {
950
+ "content": "\n\n\n\n\n\n\n\n\n\n\n",
951
+ "lstrip": false,
952
+ "normalized": false,
953
+ "rstrip": false,
954
+ "single_word": false,
955
+ "special": false
956
+ },
957
+ "119": {
958
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n",
959
+ "lstrip": false,
960
+ "normalized": false,
961
+ "rstrip": false,
962
+ "single_word": false,
963
+ "special": false
964
+ },
965
+ "120": {
966
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n",
967
+ "lstrip": false,
968
+ "normalized": false,
969
+ "rstrip": false,
970
+ "single_word": false,
971
+ "special": false
972
+ },
973
+ "121": {
974
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
975
+ "lstrip": false,
976
+ "normalized": false,
977
+ "rstrip": false,
978
+ "single_word": false,
979
+ "special": false
980
+ },
981
+ "122": {
982
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
983
+ "lstrip": false,
984
+ "normalized": false,
985
+ "rstrip": false,
986
+ "single_word": false,
987
+ "special": false
988
+ },
989
+ "123": {
990
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
991
+ "lstrip": false,
992
+ "normalized": false,
993
+ "rstrip": false,
994
+ "single_word": false,
995
+ "special": false
996
+ },
997
+ "124": {
998
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
999
+ "lstrip": false,
1000
+ "normalized": false,
1001
+ "rstrip": false,
1002
+ "single_word": false,
1003
+ "special": false
1004
+ },
1005
+ "125": {
1006
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1007
+ "lstrip": false,
1008
+ "normalized": false,
1009
+ "rstrip": false,
1010
+ "single_word": false,
1011
+ "special": false
1012
+ },
1013
+ "126": {
1014
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1015
+ "lstrip": false,
1016
+ "normalized": false,
1017
+ "rstrip": false,
1018
+ "single_word": false,
1019
+ "special": false
1020
+ },
1021
+ "127": {
1022
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1023
+ "lstrip": false,
1024
+ "normalized": false,
1025
+ "rstrip": false,
1026
+ "single_word": false,
1027
+ "special": false
1028
+ },
1029
+ "128": {
1030
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1031
+ "lstrip": false,
1032
+ "normalized": false,
1033
+ "rstrip": false,
1034
+ "single_word": false,
1035
+ "special": false
1036
+ },
1037
+ "129": {
1038
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1039
+ "lstrip": false,
1040
+ "normalized": false,
1041
+ "rstrip": false,
1042
+ "single_word": false,
1043
+ "special": false
1044
+ },
1045
+ "130": {
1046
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1047
+ "lstrip": false,
1048
+ "normalized": false,
1049
+ "rstrip": false,
1050
+ "single_word": false,
1051
+ "special": false
1052
+ },
1053
+ "131": {
1054
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1055
+ "lstrip": false,
1056
+ "normalized": false,
1057
+ "rstrip": false,
1058
+ "single_word": false,
1059
+ "special": false
1060
+ },
1061
+ "132": {
1062
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1063
+ "lstrip": false,
1064
+ "normalized": false,
1065
+ "rstrip": false,
1066
+ "single_word": false,
1067
+ "special": false
1068
+ },
1069
+ "133": {
1070
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1071
+ "lstrip": false,
1072
+ "normalized": false,
1073
+ "rstrip": false,
1074
+ "single_word": false,
1075
+ "special": false
1076
+ },
1077
+ "134": {
1078
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1079
+ "lstrip": false,
1080
+ "normalized": false,
1081
+ "rstrip": false,
1082
+ "single_word": false,
1083
+ "special": false
1084
+ },
1085
+ "135": {
1086
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1087
+ "lstrip": false,
1088
+ "normalized": false,
1089
+ "rstrip": false,
1090
+ "single_word": false,
1091
+ "special": false
1092
+ },
1093
+ "136": {
1094
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1095
+ "lstrip": false,
1096
+ "normalized": false,
1097
+ "rstrip": false,
1098
+ "single_word": false,
1099
+ "special": false
1100
+ },
1101
+ "137": {
1102
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1103
+ "lstrip": false,
1104
+ "normalized": false,
1105
+ "rstrip": false,
1106
+ "single_word": false,
1107
+ "special": false
1108
+ },
1109
+ "138": {
1110
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1111
+ "lstrip": false,
1112
+ "normalized": false,
1113
+ "rstrip": false,
1114
+ "single_word": false,
1115
+ "special": false
1116
+ },
1117
+ "139": {
1118
+ "content": "▁▁",
1119
+ "lstrip": false,
1120
+ "normalized": false,
1121
+ "rstrip": false,
1122
+ "single_word": false,
1123
+ "special": false
1124
+ },
1125
+ "140": {
1126
+ "content": "▁▁▁",
1127
+ "lstrip": false,
1128
+ "normalized": false,
1129
+ "rstrip": false,
1130
+ "single_word": false,
1131
+ "special": false
1132
+ },
1133
+ "141": {
1134
+ "content": "▁▁▁▁",
1135
+ "lstrip": false,
1136
+ "normalized": false,
1137
+ "rstrip": false,
1138
+ "single_word": false,
1139
+ "special": false
1140
+ },
1141
+ "142": {
1142
+ "content": "▁▁▁▁▁",
1143
+ "lstrip": false,
1144
+ "normalized": false,
1145
+ "rstrip": false,
1146
+ "single_word": false,
1147
+ "special": false
1148
+ },
1149
+ "143": {
1150
+ "content": "▁▁▁▁▁▁",
1151
+ "lstrip": false,
1152
+ "normalized": false,
1153
+ "rstrip": false,
1154
+ "single_word": false,
1155
+ "special": false
1156
+ },
1157
+ "144": {
1158
+ "content": "▁▁▁▁▁▁▁",
1159
+ "lstrip": false,
1160
+ "normalized": false,
1161
+ "rstrip": false,
1162
+ "single_word": false,
1163
+ "special": false
1164
+ },
1165
+ "145": {
1166
+ "content": "▁▁▁▁▁▁▁▁",
1167
+ "lstrip": false,
1168
+ "normalized": false,
1169
+ "rstrip": false,
1170
+ "single_word": false,
1171
+ "special": false
1172
+ },
1173
+ "146": {
1174
+ "content": "▁▁▁▁▁▁▁▁▁",
1175
+ "lstrip": false,
1176
+ "normalized": false,
1177
+ "rstrip": false,
1178
+ "single_word": false,
1179
+ "special": false
1180
+ },
1181
+ "147": {
1182
+ "content": "▁▁▁▁▁▁▁▁▁▁",
1183
+ "lstrip": false,
1184
+ "normalized": false,
1185
+ "rstrip": false,
1186
+ "single_word": false,
1187
+ "special": false
1188
+ },
1189
+ "148": {
1190
+ "content": "▁▁▁▁▁▁▁▁▁▁▁",
1191
+ "lstrip": false,
1192
+ "normalized": false,
1193
+ "rstrip": false,
1194
+ "single_word": false,
1195
+ "special": false
1196
+ },
1197
+ "149": {
1198
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁",
1199
+ "lstrip": false,
1200
+ "normalized": false,
1201
+ "rstrip": false,
1202
+ "single_word": false,
1203
+ "special": false
1204
+ },
1205
+ "150": {
1206
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁",
1207
+ "lstrip": false,
1208
+ "normalized": false,
1209
+ "rstrip": false,
1210
+ "single_word": false,
1211
+ "special": false
1212
+ },
1213
+ "151": {
1214
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1215
+ "lstrip": false,
1216
+ "normalized": false,
1217
+ "rstrip": false,
1218
+ "single_word": false,
1219
+ "special": false
1220
+ },
1221
+ "152": {
1222
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1223
+ "lstrip": false,
1224
+ "normalized": false,
1225
+ "rstrip": false,
1226
+ "single_word": false,
1227
+ "special": false
1228
+ },
1229
+ "153": {
1230
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1231
+ "lstrip": false,
1232
+ "normalized": false,
1233
+ "rstrip": false,
1234
+ "single_word": false,
1235
+ "special": false
1236
+ },
1237
+ "154": {
1238
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1239
+ "lstrip": false,
1240
+ "normalized": false,
1241
+ "rstrip": false,
1242
+ "single_word": false,
1243
+ "special": false
1244
+ },
1245
+ "155": {
1246
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1247
+ "lstrip": false,
1248
+ "normalized": false,
1249
+ "rstrip": false,
1250
+ "single_word": false,
1251
+ "special": false
1252
+ },
1253
+ "156": {
1254
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1255
+ "lstrip": false,
1256
+ "normalized": false,
1257
+ "rstrip": false,
1258
+ "single_word": false,
1259
+ "special": false
1260
+ },
1261
+ "157": {
1262
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1263
+ "lstrip": false,
1264
+ "normalized": false,
1265
+ "rstrip": false,
1266
+ "single_word": false,
1267
+ "special": false
1268
+ },
1269
+ "158": {
1270
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1271
+ "lstrip": false,
1272
+ "normalized": false,
1273
+ "rstrip": false,
1274
+ "single_word": false,
1275
+ "special": false
1276
+ },
1277
+ "159": {
1278
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1279
+ "lstrip": false,
1280
+ "normalized": false,
1281
+ "rstrip": false,
1282
+ "single_word": false,
1283
+ "special": false
1284
+ },
1285
+ "160": {
1286
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1287
+ "lstrip": false,
1288
+ "normalized": false,
1289
+ "rstrip": false,
1290
+ "single_word": false,
1291
+ "special": false
1292
+ },
1293
+ "161": {
1294
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1295
+ "lstrip": false,
1296
+ "normalized": false,
1297
+ "rstrip": false,
1298
+ "single_word": false,
1299
+ "special": false
1300
+ },
1301
+ "162": {
1302
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1303
+ "lstrip": false,
1304
+ "normalized": false,
1305
+ "rstrip": false,
1306
+ "single_word": false,
1307
+ "special": false
1308
+ },
1309
+ "163": {
1310
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1311
+ "lstrip": false,
1312
+ "normalized": false,
1313
+ "rstrip": false,
1314
+ "single_word": false,
1315
+ "special": false
1316
+ },
1317
+ "164": {
1318
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1319
+ "lstrip": false,
1320
+ "normalized": false,
1321
+ "rstrip": false,
1322
+ "single_word": false,
1323
+ "special": false
1324
+ },
1325
+ "165": {
1326
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1327
+ "lstrip": false,
1328
+ "normalized": false,
1329
+ "rstrip": false,
1330
+ "single_word": false,
1331
+ "special": false
1332
+ },
1333
+ "166": {
1334
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1335
+ "lstrip": false,
1336
+ "normalized": false,
1337
+ "rstrip": false,
1338
+ "single_word": false,
1339
+ "special": false
1340
+ },
1341
+ "167": {
1342
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1343
+ "lstrip": false,
1344
+ "normalized": false,
1345
+ "rstrip": false,
1346
+ "single_word": false,
1347
+ "special": false
1348
+ },
1349
+ "168": {
1350
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1351
+ "lstrip": false,
1352
+ "normalized": false,
1353
+ "rstrip": false,
1354
+ "single_word": false,
1355
+ "special": false
1356
+ },
1357
+ "169": {
1358
+ "content": "<table>",
1359
+ "lstrip": false,
1360
+ "normalized": false,
1361
+ "rstrip": false,
1362
+ "single_word": false,
1363
+ "special": false
1364
+ },
1365
+ "170": {
1366
+ "content": "<caption>",
1367
+ "lstrip": false,
1368
+ "normalized": false,
1369
+ "rstrip": false,
1370
+ "single_word": false,
1371
+ "special": false
1372
+ },
1373
+ "171": {
1374
+ "content": "<thead>",
1375
+ "lstrip": false,
1376
+ "normalized": false,
1377
+ "rstrip": false,
1378
+ "single_word": false,
1379
+ "special": false
1380
+ },
1381
+ "172": {
1382
+ "content": "<tbody>",
1383
+ "lstrip": false,
1384
+ "normalized": false,
1385
+ "rstrip": false,
1386
+ "single_word": false,
1387
+ "special": false
1388
+ },
1389
+ "173": {
1390
+ "content": "<tfoot>",
1391
+ "lstrip": false,
1392
+ "normalized": false,
1393
+ "rstrip": false,
1394
+ "single_word": false,
1395
+ "special": false
1396
+ },
1397
+ "174": {
1398
+ "content": "<tr>",
1399
+ "lstrip": false,
1400
+ "normalized": false,
1401
+ "rstrip": false,
1402
+ "single_word": false,
1403
+ "special": false
1404
+ },
1405
+ "175": {
1406
+ "content": "<th>",
1407
+ "lstrip": false,
1408
+ "normalized": false,
1409
+ "rstrip": false,
1410
+ "single_word": false,
1411
+ "special": false
1412
+ },
1413
+ "176": {
1414
+ "content": "<td>",
1415
+ "lstrip": false,
1416
+ "normalized": false,
1417
+ "rstrip": false,
1418
+ "single_word": false,
1419
+ "special": false
1420
+ },
1421
+ "177": {
1422
+ "content": "</table>",
1423
+ "lstrip": false,
1424
+ "normalized": false,
1425
+ "rstrip": false,
1426
+ "single_word": false,
1427
+ "special": false
1428
+ },
1429
+ "178": {
1430
+ "content": "</caption>",
1431
+ "lstrip": false,
1432
+ "normalized": false,
1433
+ "rstrip": false,
1434
+ "single_word": false,
1435
+ "special": false
1436
+ },
1437
+ "179": {
1438
+ "content": "</thead>",
1439
+ "lstrip": false,
1440
+ "normalized": false,
1441
+ "rstrip": false,
1442
+ "single_word": false,
1443
+ "special": false
1444
+ },
1445
+ "180": {
1446
+ "content": "</tbody>",
1447
+ "lstrip": false,
1448
+ "normalized": false,
1449
+ "rstrip": false,
1450
+ "single_word": false,
1451
+ "special": false
1452
+ },
1453
+ "181": {
1454
+ "content": "</tfoot>",
1455
+ "lstrip": false,
1456
+ "normalized": false,
1457
+ "rstrip": false,
1458
+ "single_word": false,
1459
+ "special": false
1460
+ },
1461
+ "182": {
1462
+ "content": "</tr>",
1463
+ "lstrip": false,
1464
+ "normalized": false,
1465
+ "rstrip": false,
1466
+ "single_word": false,
1467
+ "special": false
1468
+ },
1469
+ "183": {
1470
+ "content": "</th>",
1471
+ "lstrip": false,
1472
+ "normalized": false,
1473
+ "rstrip": false,
1474
+ "single_word": false,
1475
+ "special": false
1476
+ },
1477
+ "184": {
1478
+ "content": "</td>",
1479
+ "lstrip": false,
1480
+ "normalized": false,
1481
+ "rstrip": false,
1482
+ "single_word": false,
1483
+ "special": false
1484
+ },
1485
+ "185": {
1486
+ "content": "<h1>",
1487
+ "lstrip": false,
1488
+ "normalized": false,
1489
+ "rstrip": false,
1490
+ "single_word": false,
1491
+ "special": false
1492
+ },
1493
+ "186": {
1494
+ "content": "<h2>",
1495
+ "lstrip": false,
1496
+ "normalized": false,
1497
+ "rstrip": false,
1498
+ "single_word": false,
1499
+ "special": false
1500
+ },
1501
+ "187": {
1502
+ "content": "<h3>",
1503
+ "lstrip": false,
1504
+ "normalized": false,
1505
+ "rstrip": false,
1506
+ "single_word": false,
1507
+ "special": false
1508
+ },
1509
+ "188": {
1510
+ "content": "<h4>",
1511
+ "lstrip": false,
1512
+ "normalized": false,
1513
+ "rstrip": false,
1514
+ "single_word": false,
1515
+ "special": false
1516
+ },
1517
+ "189": {
1518
+ "content": "<h5>",
1519
+ "lstrip": false,
1520
+ "normalized": false,
1521
+ "rstrip": false,
1522
+ "single_word": false,
1523
+ "special": false
1524
+ },
1525
+ "190": {
1526
+ "content": "<h6>",
1527
+ "lstrip": false,
1528
+ "normalized": false,
1529
+ "rstrip": false,
1530
+ "single_word": false,
1531
+ "special": false
1532
+ },
1533
+ "191": {
1534
+ "content": "<blockquote>",
1535
+ "lstrip": false,
1536
+ "normalized": false,
1537
+ "rstrip": false,
1538
+ "single_word": false,
1539
+ "special": false
1540
+ },
1541
+ "192": {
1542
+ "content": "</h1>",
1543
+ "lstrip": false,
1544
+ "normalized": false,
1545
+ "rstrip": false,
1546
+ "single_word": false,
1547
+ "special": false
1548
+ },
1549
+ "193": {
1550
+ "content": "</h2>",
1551
+ "lstrip": false,
1552
+ "normalized": false,
1553
+ "rstrip": false,
1554
+ "single_word": false,
1555
+ "special": false
1556
+ },
1557
+ "194": {
1558
+ "content": "</h3>",
1559
+ "lstrip": false,
1560
+ "normalized": false,
1561
+ "rstrip": false,
1562
+ "single_word": false,
1563
+ "special": false
1564
+ },
1565
+ "195": {
1566
+ "content": "</h4>",
1567
+ "lstrip": false,
1568
+ "normalized": false,
1569
+ "rstrip": false,
1570
+ "single_word": false,
1571
+ "special": false
1572
+ },
1573
+ "196": {
1574
+ "content": "</h5>",
1575
+ "lstrip": false,
1576
+ "normalized": false,
1577
+ "rstrip": false,
1578
+ "single_word": false,
1579
+ "special": false
1580
+ },
1581
+ "197": {
1582
+ "content": "</h6>",
1583
+ "lstrip": false,
1584
+ "normalized": false,
1585
+ "rstrip": false,
1586
+ "single_word": false,
1587
+ "special": false
1588
+ },
1589
+ "198": {
1590
+ "content": "</blockquote>",
1591
+ "lstrip": false,
1592
+ "normalized": false,
1593
+ "rstrip": false,
1594
+ "single_word": false,
1595
+ "special": false
1596
+ },
1597
+ "199": {
1598
+ "content": "<strong>",
1599
+ "lstrip": false,
1600
+ "normalized": false,
1601
+ "rstrip": false,
1602
+ "single_word": false,
1603
+ "special": false
1604
+ },
1605
+ "200": {
1606
+ "content": "<em>",
1607
+ "lstrip": false,
1608
+ "normalized": false,
1609
+ "rstrip": false,
1610
+ "single_word": false,
1611
+ "special": false
1612
+ },
1613
+ "201": {
1614
+ "content": "<b>",
1615
+ "lstrip": false,
1616
+ "normalized": false,
1617
+ "rstrip": false,
1618
+ "single_word": false,
1619
+ "special": false
1620
+ },
1621
+ "202": {
1622
+ "content": "<i>",
1623
+ "lstrip": false,
1624
+ "normalized": false,
1625
+ "rstrip": false,
1626
+ "single_word": false,
1627
+ "special": false
1628
+ },
1629
+ "203": {
1630
+ "content": "<u>",
1631
+ "lstrip": false,
1632
+ "normalized": false,
1633
+ "rstrip": false,
1634
+ "single_word": false,
1635
+ "special": false
1636
+ },
1637
+ "204": {
1638
+ "content": "<s>",
1639
+ "lstrip": false,
1640
+ "normalized": false,
1641
+ "rstrip": false,
1642
+ "single_word": false,
1643
+ "special": false
1644
+ },
1645
+ "205": {
1646
+ "content": "<sub>",
1647
+ "lstrip": false,
1648
+ "normalized": false,
1649
+ "rstrip": false,
1650
+ "single_word": false,
1651
+ "special": false
1652
+ },
1653
+ "206": {
1654
+ "content": "<sup>",
1655
+ "lstrip": false,
1656
+ "normalized": false,
1657
+ "rstrip": false,
1658
+ "single_word": false,
1659
+ "special": false
1660
+ },
1661
+ "207": {
1662
+ "content": "<code>",
1663
+ "lstrip": false,
1664
+ "normalized": false,
1665
+ "rstrip": false,
1666
+ "single_word": false,
1667
+ "special": false
1668
+ },
1669
+ "208": {
1670
+ "content": "</strong>",
1671
+ "lstrip": false,
1672
+ "normalized": false,
1673
+ "rstrip": false,
1674
+ "single_word": false,
1675
+ "special": false
1676
+ },
1677
+ "209": {
1678
+ "content": "</em>",
1679
+ "lstrip": false,
1680
+ "normalized": false,
1681
+ "rstrip": false,
1682
+ "single_word": false,
1683
+ "special": false
1684
+ },
1685
+ "210": {
1686
+ "content": "</b>",
1687
+ "lstrip": false,
1688
+ "normalized": false,
1689
+ "rstrip": false,
1690
+ "single_word": false,
1691
+ "special": false
1692
+ },
1693
+ "211": {
1694
+ "content": "</i>",
1695
+ "lstrip": false,
1696
+ "normalized": false,
1697
+ "rstrip": false,
1698
+ "single_word": false,
1699
+ "special": false
1700
+ },
1701
+ "212": {
1702
+ "content": "</u>",
1703
+ "lstrip": false,
1704
+ "normalized": false,
1705
+ "rstrip": false,
1706
+ "single_word": false,
1707
+ "special": false
1708
+ },
1709
+ "213": {
1710
+ "content": "</s>",
1711
+ "lstrip": false,
1712
+ "normalized": false,
1713
+ "rstrip": false,
1714
+ "single_word": false,
1715
+ "special": false
1716
+ },
1717
+ "214": {
1718
+ "content": "</sub>",
1719
+ "lstrip": false,
1720
+ "normalized": false,
1721
+ "rstrip": false,
1722
+ "single_word": false,
1723
+ "special": false
1724
+ },
1725
+ "215": {
1726
+ "content": "</sup>",
1727
+ "lstrip": false,
1728
+ "normalized": false,
1729
+ "rstrip": false,
1730
+ "single_word": false,
1731
+ "special": false
1732
+ },
1733
+ "216": {
1734
+ "content": "</code>",
1735
+ "lstrip": false,
1736
+ "normalized": false,
1737
+ "rstrip": false,
1738
+ "single_word": false,
1739
+ "special": false
1740
+ },
1741
+ "255968": {
1742
+ "content": "[toxicity=0]",
1743
+ "lstrip": false,
1744
+ "normalized": false,
1745
+ "rstrip": false,
1746
+ "single_word": false,
1747
+ "special": false
1748
+ },
1749
+ "255969": {
1750
+ "content": "\t\t",
1751
+ "lstrip": false,
1752
+ "normalized": false,
1753
+ "rstrip": false,
1754
+ "single_word": false,
1755
+ "special": false
1756
+ },
1757
+ "255970": {
1758
+ "content": "\t\t\t",
1759
+ "lstrip": false,
1760
+ "normalized": false,
1761
+ "rstrip": false,
1762
+ "single_word": false,
1763
+ "special": false
1764
+ },
1765
+ "255971": {
1766
+ "content": "\t\t\t\t",
1767
+ "lstrip": false,
1768
+ "normalized": false,
1769
+ "rstrip": false,
1770
+ "single_word": false,
1771
+ "special": false
1772
+ },
1773
+ "255972": {
1774
+ "content": "\t\t\t\t\t",
1775
+ "lstrip": false,
1776
+ "normalized": false,
1777
+ "rstrip": false,
1778
+ "single_word": false,
1779
+ "special": false
1780
+ },
1781
+ "255973": {
1782
+ "content": "\t\t\t\t\t\t",
1783
+ "lstrip": false,
1784
+ "normalized": false,
1785
+ "rstrip": false,
1786
+ "single_word": false,
1787
+ "special": false
1788
+ },
1789
+ "255974": {
1790
+ "content": "\t\t\t\t\t\t\t",
1791
+ "lstrip": false,
1792
+ "normalized": false,
1793
+ "rstrip": false,
1794
+ "single_word": false,
1795
+ "special": false
1796
+ },
1797
+ "255975": {
1798
+ "content": "\t\t\t\t\t\t\t\t",
1799
+ "lstrip": false,
1800
+ "normalized": false,
1801
+ "rstrip": false,
1802
+ "single_word": false,
1803
+ "special": false
1804
+ },
1805
+ "255976": {
1806
+ "content": "\t\t\t\t\t\t\t\t\t",
1807
+ "lstrip": false,
1808
+ "normalized": false,
1809
+ "rstrip": false,
1810
+ "single_word": false,
1811
+ "special": false
1812
+ },
1813
+ "255977": {
1814
+ "content": "\t\t\t\t\t\t\t\t\t\t",
1815
+ "lstrip": false,
1816
+ "normalized": false,
1817
+ "rstrip": false,
1818
+ "single_word": false,
1819
+ "special": false
1820
+ },
1821
+ "255978": {
1822
+ "content": "\t\t\t\t\t\t\t\t\t\t\t",
1823
+ "lstrip": false,
1824
+ "normalized": false,
1825
+ "rstrip": false,
1826
+ "single_word": false,
1827
+ "special": false
1828
+ },
1829
+ "255979": {
1830
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t",
1831
+ "lstrip": false,
1832
+ "normalized": false,
1833
+ "rstrip": false,
1834
+ "single_word": false,
1835
+ "special": false
1836
+ },
1837
+ "255980": {
1838
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t",
1839
+ "lstrip": false,
1840
+ "normalized": false,
1841
+ "rstrip": false,
1842
+ "single_word": false,
1843
+ "special": false
1844
+ },
1845
+ "255981": {
1846
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1847
+ "lstrip": false,
1848
+ "normalized": false,
1849
+ "rstrip": false,
1850
+ "single_word": false,
1851
+ "special": false
1852
+ },
1853
+ "255982": {
1854
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1855
+ "lstrip": false,
1856
+ "normalized": false,
1857
+ "rstrip": false,
1858
+ "single_word": false,
1859
+ "special": false
1860
+ },
1861
+ "255983": {
1862
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1863
+ "lstrip": false,
1864
+ "normalized": false,
1865
+ "rstrip": false,
1866
+ "single_word": false,
1867
+ "special": false
1868
+ },
1869
+ "255984": {
1870
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1871
+ "lstrip": false,
1872
+ "normalized": false,
1873
+ "rstrip": false,
1874
+ "single_word": false,
1875
+ "special": false
1876
+ },
1877
+ "255985": {
1878
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1879
+ "lstrip": false,
1880
+ "normalized": false,
1881
+ "rstrip": false,
1882
+ "single_word": false,
1883
+ "special": false
1884
+ },
1885
+ "255986": {
1886
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1887
+ "lstrip": false,
1888
+ "normalized": false,
1889
+ "rstrip": false,
1890
+ "single_word": false,
1891
+ "special": false
1892
+ },
1893
+ "255987": {
1894
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1895
+ "lstrip": false,
1896
+ "normalized": false,
1897
+ "rstrip": false,
1898
+ "single_word": false,
1899
+ "special": false
1900
+ },
1901
+ "255988": {
1902
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1903
+ "lstrip": false,
1904
+ "normalized": false,
1905
+ "rstrip": false,
1906
+ "single_word": false,
1907
+ "special": false
1908
+ },
1909
+ "255989": {
1910
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1911
+ "lstrip": false,
1912
+ "normalized": false,
1913
+ "rstrip": false,
1914
+ "single_word": false,
1915
+ "special": false
1916
+ },
1917
+ "255990": {
1918
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1919
+ "lstrip": false,
1920
+ "normalized": false,
1921
+ "rstrip": false,
1922
+ "single_word": false,
1923
+ "special": false
1924
+ },
1925
+ "255991": {
1926
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1927
+ "lstrip": false,
1928
+ "normalized": false,
1929
+ "rstrip": false,
1930
+ "single_word": false,
1931
+ "special": false
1932
+ },
1933
+ "255992": {
1934
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1935
+ "lstrip": false,
1936
+ "normalized": false,
1937
+ "rstrip": false,
1938
+ "single_word": false,
1939
+ "special": false
1940
+ },
1941
+ "255993": {
1942
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1943
+ "lstrip": false,
1944
+ "normalized": false,
1945
+ "rstrip": false,
1946
+ "single_word": false,
1947
+ "special": false
1948
+ },
1949
+ "255994": {
1950
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1951
+ "lstrip": false,
1952
+ "normalized": false,
1953
+ "rstrip": false,
1954
+ "single_word": false,
1955
+ "special": false
1956
+ },
1957
+ "255995": {
1958
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1959
+ "lstrip": false,
1960
+ "normalized": false,
1961
+ "rstrip": false,
1962
+ "single_word": false,
1963
+ "special": false
1964
+ },
1965
+ "255996": {
1966
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1967
+ "lstrip": false,
1968
+ "normalized": false,
1969
+ "rstrip": false,
1970
+ "single_word": false,
1971
+ "special": false
1972
+ },
1973
+ "255997": {
1974
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1975
+ "lstrip": false,
1976
+ "normalized": false,
1977
+ "rstrip": false,
1978
+ "single_word": false,
1979
+ "special": false
1980
+ },
1981
+ "255998": {
1982
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1983
+ "lstrip": false,
1984
+ "normalized": false,
1985
+ "rstrip": false,
1986
+ "single_word": false,
1987
+ "special": false
1988
+ },
1989
+ "255999": {
1990
+ "content": "<unused99>",
1991
+ "lstrip": false,
1992
+ "normalized": false,
1993
+ "rstrip": false,
1994
+ "single_word": false,
1995
+ "special": false
1996
+ }
1997
+ },
1998
+ "additional_special_tokens": [
1999
+ "<start_of_turn>",
2000
+ "<end_of_turn>"
2001
+ ],
2002
+ "bos_token": "<bos>",
2003
+ "clean_up_tokenization_spaces": false,
2004
+ "eos_token": "<end_of_turn>",
2005
+ "extra_special_tokens": {},
2006
+ "model_max_length": 1000000000000000019884624838656,
2007
+ "pad_token": "<pad>",
2008
+ "padding_side": "right",
2009
+ "sp_model_kwargs": {},
2010
+ "spaces_between_special_tokens": false,
2011
+ "split_special_tokens": false,
2012
+ "tokenizer_class": "GemmaTokenizerFast",
2013
+ "unk_token": "<unk>",
2014
+ "use_default_system_prompt": false
2015
+ }