Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- chat_template.jinja +4 -0
- config.json +40 -0
- configuration_gemma2moe.py +110 -0
- generation_config.json +7 -0
- model-00001-of-00009.safetensors +3 -0
- model-00002-of-00009.safetensors +3 -0
- model-00003-of-00009.safetensors +3 -0
- model-00004-of-00009.safetensors +3 -0
- model-00005-of-00009.safetensors +3 -0
- model-00006-of-00009.safetensors +3 -0
- model-00007-of-00009.safetensors +3 -0
- model-00008-of-00009.safetensors +3 -0
- model-00009-of-00009.safetensors +3 -0
- model.safetensors.index.json +766 -0
- modeling_gemma2moe.py +753 -0
- special_tokens_map.json +34 -0
- tokenizer.json +3 -0
- tokenizer_config.json +2015 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '
|
| 2 |
+
' + message['content'] | trim + '<end_of_turn>
|
| 3 |
+
' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model
|
| 4 |
+
'}}{% endif %}
|
config.json
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Gemma2MoeForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"attn_logit_soft_capping": 50.0,
|
| 8 |
+
"auto_map": {
|
| 9 |
+
"AutoConfig": "suayptalha/turkish-gemmoe2-t1-base--configuration_gemma2moe.Gemma2MoeConfig",
|
| 10 |
+
"AutoModelForCausalLM": "suayptalha/turkish-gemmoe2-t1-base--modeling_gemma2moe.Gemma2MoeForCausalLM"
|
| 11 |
+
},
|
| 12 |
+
"bos_token_id": 2,
|
| 13 |
+
"dtype": "bfloat16",
|
| 14 |
+
"eos_token_id": 1,
|
| 15 |
+
"head_dim": 256,
|
| 16 |
+
"hidden_act": "gelu_pytorch_tanh",
|
| 17 |
+
"hidden_size": 3584,
|
| 18 |
+
"initializer_range": 0.02,
|
| 19 |
+
"intermediate_size": 14336,
|
| 20 |
+
"logit_soft_capping": 30.0,
|
| 21 |
+
"max_position_embeddings": 8192,
|
| 22 |
+
"model_type": "gemma2moe",
|
| 23 |
+
"num_attention_heads": 16,
|
| 24 |
+
"num_experts_per_tok": 2,
|
| 25 |
+
"num_hidden_layers": 42,
|
| 26 |
+
"num_key_value_heads": 8,
|
| 27 |
+
"num_local_experts": 3,
|
| 28 |
+
"output_router_logits": false,
|
| 29 |
+
"pad_token_id": 0,
|
| 30 |
+
"path": "suayptalha/turkish-gemmoe2-t1-base",
|
| 31 |
+
"query_pre_attn_scalar": 256,
|
| 32 |
+
"rms_norm_eps": 1e-06,
|
| 33 |
+
"rope_theta": 10000.0,
|
| 34 |
+
"router_aux_loss_coef": 0.001,
|
| 35 |
+
"router_jitter_noise": 0.0,
|
| 36 |
+
"sliding_window": 4096,
|
| 37 |
+
"transformers_version": "4.56.0",
|
| 38 |
+
"use_cache": true,
|
| 39 |
+
"vocab_size": 256000
|
| 40 |
+
}
|
configuration_gemma2moe.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The HuggingFace Inc. team and Gemma2MoE Contributors.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" Gemma2MoE model configuration"""
|
| 16 |
+
|
| 17 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 18 |
+
from transformers.utils import logging
|
| 19 |
+
|
| 20 |
+
logger = logging.get_logger(__name__)
|
| 21 |
+
|
| 22 |
+
class Gemma2MoeConfig(PretrainedConfig):
|
| 23 |
+
r"""
|
| 24 |
+
This is the configuration class to store the configuration of a [`Gemma2MoeModel`]. It is used to instantiate an Gemma2MoE
|
| 25 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 26 |
+
defaults will yield a similar configuration to that of the Gemma-2-9b but with MoE capabilities.
|
| 27 |
+
|
| 28 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 29 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 30 |
+
"""
|
| 31 |
+
model_type = "gemma2moe"
|
| 32 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 33 |
+
|
| 34 |
+
def __init__(
|
| 35 |
+
self,
|
| 36 |
+
vocab_size=256000,
|
| 37 |
+
hidden_size=3584,
|
| 38 |
+
intermediate_size=14336,
|
| 39 |
+
num_hidden_layers=42,
|
| 40 |
+
num_attention_heads=16,
|
| 41 |
+
num_key_value_heads=8,
|
| 42 |
+
head_dim=256,
|
| 43 |
+
hidden_act="gelu_pytorch_tanh",
|
| 44 |
+
max_position_embeddings=8192,
|
| 45 |
+
initializer_range=0.02,
|
| 46 |
+
rms_norm_eps=1e-6,
|
| 47 |
+
use_cache=True,
|
| 48 |
+
pad_token_id=0,
|
| 49 |
+
eos_token_id=1,
|
| 50 |
+
bos_token_id=2,
|
| 51 |
+
tie_word_embeddings=True,
|
| 52 |
+
rope_theta=10000.0,
|
| 53 |
+
attention_bias=False,
|
| 54 |
+
attention_dropout=0.0,
|
| 55 |
+
|
| 56 |
+
# Gemma 2 Specific Args
|
| 57 |
+
query_pre_attn_scalar=224, # 1/sqrt(head_dim) yerine Gemma2'ye özel scaling (genelde hidden_size temelli)
|
| 58 |
+
sliding_window=4096, # Sliding Window Attention window size
|
| 59 |
+
logit_soft_capping=30.0, # Final logit soft capping
|
| 60 |
+
attn_logit_soft_capping=50.0, # Attention scores soft capping
|
| 61 |
+
|
| 62 |
+
# MoE Arguments
|
| 63 |
+
num_experts_per_tok=2,
|
| 64 |
+
num_local_experts=8,
|
| 65 |
+
router_aux_loss_coef=0.001,
|
| 66 |
+
output_router_logits=False,
|
| 67 |
+
router_jitter_noise=0.0, # Opsiyonel: Router stabilitesi için jitter
|
| 68 |
+
**kwargs,
|
| 69 |
+
):
|
| 70 |
+
self.vocab_size = vocab_size
|
| 71 |
+
self.max_position_embeddings = max_position_embeddings
|
| 72 |
+
self.hidden_size = hidden_size
|
| 73 |
+
self.intermediate_size = intermediate_size
|
| 74 |
+
self.num_hidden_layers = num_hidden_layers
|
| 75 |
+
self.num_attention_heads = num_attention_heads
|
| 76 |
+
|
| 77 |
+
# Grouped Query Attention (GQA) kontrolü
|
| 78 |
+
if num_key_value_heads is None:
|
| 79 |
+
num_key_value_heads = num_attention_heads
|
| 80 |
+
self.num_key_value_heads = num_key_value_heads
|
| 81 |
+
|
| 82 |
+
self.head_dim = head_dim
|
| 83 |
+
self.hidden_act = hidden_act
|
| 84 |
+
self.initializer_range = initializer_range
|
| 85 |
+
self.rms_norm_eps = rms_norm_eps
|
| 86 |
+
self.use_cache = use_cache
|
| 87 |
+
self.rope_theta = rope_theta
|
| 88 |
+
self.attention_bias = attention_bias
|
| 89 |
+
self.attention_dropout = attention_dropout
|
| 90 |
+
|
| 91 |
+
# Gemma 2 Specifics
|
| 92 |
+
self.query_pre_attn_scalar = query_pre_attn_scalar
|
| 93 |
+
self.sliding_window = sliding_window
|
| 94 |
+
self.logit_soft_capping = logit_soft_capping
|
| 95 |
+
self.attn_logit_soft_capping = attn_logit_soft_capping
|
| 96 |
+
|
| 97 |
+
# MoE Specifics
|
| 98 |
+
self.num_experts_per_tok = num_experts_per_tok
|
| 99 |
+
self.num_local_experts = num_local_experts
|
| 100 |
+
self.router_aux_loss_coef = router_aux_loss_coef
|
| 101 |
+
self.output_router_logits = output_router_logits
|
| 102 |
+
self.router_jitter_noise = router_jitter_noise
|
| 103 |
+
|
| 104 |
+
super().__init__(
|
| 105 |
+
pad_token_id=pad_token_id,
|
| 106 |
+
bos_token_id=bos_token_id,
|
| 107 |
+
eos_token_id=eos_token_id,
|
| 108 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 109 |
+
**kwargs,
|
| 110 |
+
)
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 2,
|
| 4 |
+
"eos_token_id": 1,
|
| 5 |
+
"pad_token_id": 0,
|
| 6 |
+
"transformers_version": "4.56.0"
|
| 7 |
+
}
|
model-00001-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b1458267106e3e74e4271437e790699f480e47fa822429d5d5ea9aa0c7920f5a
|
| 3 |
+
size 4962041280
|
model-00002-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aca5cdb17ec10599608bc342de0bd93a2d90e1ac5f64914079b7c1f2c4a3ddcb
|
| 3 |
+
size 4976781976
|
model-00003-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ef271ea9dfdeb64b15f0a0f7a10d4be0dda524838b9d9ece9fad0ab70e01e17a
|
| 3 |
+
size 4962094760
|
model-00004-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1984189ecc983997d2e62317039b29ac3c91c6cfae5437e47c2084581603c51c
|
| 3 |
+
size 4962123960
|
model-00005-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:de0a692c6b4c4c3d7c3886141a3b0a80a4cccb224bb530c4d7d8a048c7b8d7c6
|
| 3 |
+
size 4962123960
|
model-00006-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4eb0b93d14004a42572536b94f6e338705136a2230da60664f3f6b82a30d49ed
|
| 3 |
+
size 4962123960
|
model-00007-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4f89363a36e54457acf5072084e568575762b184e7365773cced52ab50b3ad8d
|
| 3 |
+
size 4962123960
|
model-00008-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:75c497dd8b0f3057f51838011fcec114a1157443260f55025bcf354d27e1318d
|
| 3 |
+
size 4962123960
|
model-00009-of-00009.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:380abb7b99f0065222ac3d120c35c58230674aef25027274acd2a733d04ec6c3
|
| 3 |
+
size 4668507560
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,766 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_parameters": 22189974016,
|
| 4 |
+
"total_size": 44379948032
|
| 5 |
+
},
|
| 6 |
+
"weight_map": {
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00009.safetensors",
|
| 8 |
+
"model.layers.0.block_sparse_moe.experts.0.down_proj.weight": "model-00001-of-00009.safetensors",
|
| 9 |
+
"model.layers.0.block_sparse_moe.experts.0.gate_proj.weight": "model-00001-of-00009.safetensors",
|
| 10 |
+
"model.layers.0.block_sparse_moe.experts.0.up_proj.weight": "model-00001-of-00009.safetensors",
|
| 11 |
+
"model.layers.0.block_sparse_moe.experts.1.down_proj.weight": "model-00001-of-00009.safetensors",
|
| 12 |
+
"model.layers.0.block_sparse_moe.experts.1.gate_proj.weight": "model-00001-of-00009.safetensors",
|
| 13 |
+
"model.layers.0.block_sparse_moe.experts.1.up_proj.weight": "model-00001-of-00009.safetensors",
|
| 14 |
+
"model.layers.0.block_sparse_moe.experts.2.down_proj.weight": "model-00001-of-00009.safetensors",
|
| 15 |
+
"model.layers.0.block_sparse_moe.experts.2.gate_proj.weight": "model-00001-of-00009.safetensors",
|
| 16 |
+
"model.layers.0.block_sparse_moe.experts.2.up_proj.weight": "model-00001-of-00009.safetensors",
|
| 17 |
+
"model.layers.0.block_sparse_moe.gate.weight": "model-00001-of-00009.safetensors",
|
| 18 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00009.safetensors",
|
| 19 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
|
| 20 |
+
"model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00009.safetensors",
|
| 21 |
+
"model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00009.safetensors",
|
| 22 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
|
| 23 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
|
| 24 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
|
| 25 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
|
| 26 |
+
"model.layers.1.block_sparse_moe.experts.0.down_proj.weight": "model-00001-of-00009.safetensors",
|
| 27 |
+
"model.layers.1.block_sparse_moe.experts.0.gate_proj.weight": "model-00001-of-00009.safetensors",
|
| 28 |
+
"model.layers.1.block_sparse_moe.experts.0.up_proj.weight": "model-00001-of-00009.safetensors",
|
| 29 |
+
"model.layers.1.block_sparse_moe.experts.1.down_proj.weight": "model-00001-of-00009.safetensors",
|
| 30 |
+
"model.layers.1.block_sparse_moe.experts.1.gate_proj.weight": "model-00001-of-00009.safetensors",
|
| 31 |
+
"model.layers.1.block_sparse_moe.experts.1.up_proj.weight": "model-00001-of-00009.safetensors",
|
| 32 |
+
"model.layers.1.block_sparse_moe.experts.2.down_proj.weight": "model-00001-of-00009.safetensors",
|
| 33 |
+
"model.layers.1.block_sparse_moe.experts.2.gate_proj.weight": "model-00001-of-00009.safetensors",
|
| 34 |
+
"model.layers.1.block_sparse_moe.experts.2.up_proj.weight": "model-00001-of-00009.safetensors",
|
| 35 |
+
"model.layers.1.block_sparse_moe.gate.weight": "model-00001-of-00009.safetensors",
|
| 36 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00009.safetensors",
|
| 37 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
|
| 38 |
+
"model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00009.safetensors",
|
| 39 |
+
"model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00009.safetensors",
|
| 40 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
|
| 41 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
|
| 42 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
|
| 43 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
|
| 44 |
+
"model.layers.10.block_sparse_moe.experts.0.down_proj.weight": "model-00003-of-00009.safetensors",
|
| 45 |
+
"model.layers.10.block_sparse_moe.experts.0.gate_proj.weight": "model-00003-of-00009.safetensors",
|
| 46 |
+
"model.layers.10.block_sparse_moe.experts.0.up_proj.weight": "model-00003-of-00009.safetensors",
|
| 47 |
+
"model.layers.10.block_sparse_moe.experts.1.down_proj.weight": "model-00003-of-00009.safetensors",
|
| 48 |
+
"model.layers.10.block_sparse_moe.experts.1.gate_proj.weight": "model-00003-of-00009.safetensors",
|
| 49 |
+
"model.layers.10.block_sparse_moe.experts.1.up_proj.weight": "model-00003-of-00009.safetensors",
|
| 50 |
+
"model.layers.10.block_sparse_moe.experts.2.down_proj.weight": "model-00003-of-00009.safetensors",
|
| 51 |
+
"model.layers.10.block_sparse_moe.experts.2.gate_proj.weight": "model-00003-of-00009.safetensors",
|
| 52 |
+
"model.layers.10.block_sparse_moe.experts.2.up_proj.weight": "model-00003-of-00009.safetensors",
|
| 53 |
+
"model.layers.10.block_sparse_moe.gate.weight": "model-00003-of-00009.safetensors",
|
| 54 |
+
"model.layers.10.input_layernorm.weight": "model-00003-of-00009.safetensors",
|
| 55 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
|
| 56 |
+
"model.layers.10.post_feedforward_layernorm.weight": "model-00003-of-00009.safetensors",
|
| 57 |
+
"model.layers.10.pre_feedforward_layernorm.weight": "model-00003-of-00009.safetensors",
|
| 58 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
|
| 59 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
|
| 60 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
|
| 61 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
|
| 62 |
+
"model.layers.11.block_sparse_moe.experts.0.down_proj.weight": "model-00003-of-00009.safetensors",
|
| 63 |
+
"model.layers.11.block_sparse_moe.experts.0.gate_proj.weight": "model-00003-of-00009.safetensors",
|
| 64 |
+
"model.layers.11.block_sparse_moe.experts.0.up_proj.weight": "model-00003-of-00009.safetensors",
|
| 65 |
+
"model.layers.11.block_sparse_moe.experts.1.down_proj.weight": "model-00003-of-00009.safetensors",
|
| 66 |
+
"model.layers.11.block_sparse_moe.experts.1.gate_proj.weight": "model-00003-of-00009.safetensors",
|
| 67 |
+
"model.layers.11.block_sparse_moe.experts.1.up_proj.weight": "model-00003-of-00009.safetensors",
|
| 68 |
+
"model.layers.11.block_sparse_moe.experts.2.down_proj.weight": "model-00003-of-00009.safetensors",
|
| 69 |
+
"model.layers.11.block_sparse_moe.experts.2.gate_proj.weight": "model-00003-of-00009.safetensors",
|
| 70 |
+
"model.layers.11.block_sparse_moe.experts.2.up_proj.weight": "model-00003-of-00009.safetensors",
|
| 71 |
+
"model.layers.11.block_sparse_moe.gate.weight": "model-00003-of-00009.safetensors",
|
| 72 |
+
"model.layers.11.input_layernorm.weight": "model-00003-of-00009.safetensors",
|
| 73 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
|
| 74 |
+
"model.layers.11.post_feedforward_layernorm.weight": "model-00003-of-00009.safetensors",
|
| 75 |
+
"model.layers.11.pre_feedforward_layernorm.weight": "model-00003-of-00009.safetensors",
|
| 76 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
|
| 77 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
|
| 78 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
|
| 79 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
|
| 80 |
+
"model.layers.12.block_sparse_moe.experts.0.down_proj.weight": "model-00003-of-00009.safetensors",
|
| 81 |
+
"model.layers.12.block_sparse_moe.experts.0.gate_proj.weight": "model-00003-of-00009.safetensors",
|
| 82 |
+
"model.layers.12.block_sparse_moe.experts.0.up_proj.weight": "model-00003-of-00009.safetensors",
|
| 83 |
+
"model.layers.12.block_sparse_moe.experts.1.down_proj.weight": "model-00003-of-00009.safetensors",
|
| 84 |
+
"model.layers.12.block_sparse_moe.experts.1.gate_proj.weight": "model-00003-of-00009.safetensors",
|
| 85 |
+
"model.layers.12.block_sparse_moe.experts.1.up_proj.weight": "model-00003-of-00009.safetensors",
|
| 86 |
+
"model.layers.12.block_sparse_moe.experts.2.down_proj.weight": "model-00004-of-00009.safetensors",
|
| 87 |
+
"model.layers.12.block_sparse_moe.experts.2.gate_proj.weight": "model-00003-of-00009.safetensors",
|
| 88 |
+
"model.layers.12.block_sparse_moe.experts.2.up_proj.weight": "model-00003-of-00009.safetensors",
|
| 89 |
+
"model.layers.12.block_sparse_moe.gate.weight": "model-00003-of-00009.safetensors",
|
| 90 |
+
"model.layers.12.input_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 91 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 92 |
+
"model.layers.12.post_feedforward_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 93 |
+
"model.layers.12.pre_feedforward_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 94 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
|
| 95 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
|
| 96 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
|
| 97 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
|
| 98 |
+
"model.layers.13.block_sparse_moe.experts.0.down_proj.weight": "model-00004-of-00009.safetensors",
|
| 99 |
+
"model.layers.13.block_sparse_moe.experts.0.gate_proj.weight": "model-00004-of-00009.safetensors",
|
| 100 |
+
"model.layers.13.block_sparse_moe.experts.0.up_proj.weight": "model-00004-of-00009.safetensors",
|
| 101 |
+
"model.layers.13.block_sparse_moe.experts.1.down_proj.weight": "model-00004-of-00009.safetensors",
|
| 102 |
+
"model.layers.13.block_sparse_moe.experts.1.gate_proj.weight": "model-00004-of-00009.safetensors",
|
| 103 |
+
"model.layers.13.block_sparse_moe.experts.1.up_proj.weight": "model-00004-of-00009.safetensors",
|
| 104 |
+
"model.layers.13.block_sparse_moe.experts.2.down_proj.weight": "model-00004-of-00009.safetensors",
|
| 105 |
+
"model.layers.13.block_sparse_moe.experts.2.gate_proj.weight": "model-00004-of-00009.safetensors",
|
| 106 |
+
"model.layers.13.block_sparse_moe.experts.2.up_proj.weight": "model-00004-of-00009.safetensors",
|
| 107 |
+
"model.layers.13.block_sparse_moe.gate.weight": "model-00004-of-00009.safetensors",
|
| 108 |
+
"model.layers.13.input_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 109 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 110 |
+
"model.layers.13.post_feedforward_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 111 |
+
"model.layers.13.pre_feedforward_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 112 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
|
| 113 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
|
| 114 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
|
| 115 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
|
| 116 |
+
"model.layers.14.block_sparse_moe.experts.0.down_proj.weight": "model-00004-of-00009.safetensors",
|
| 117 |
+
"model.layers.14.block_sparse_moe.experts.0.gate_proj.weight": "model-00004-of-00009.safetensors",
|
| 118 |
+
"model.layers.14.block_sparse_moe.experts.0.up_proj.weight": "model-00004-of-00009.safetensors",
|
| 119 |
+
"model.layers.14.block_sparse_moe.experts.1.down_proj.weight": "model-00004-of-00009.safetensors",
|
| 120 |
+
"model.layers.14.block_sparse_moe.experts.1.gate_proj.weight": "model-00004-of-00009.safetensors",
|
| 121 |
+
"model.layers.14.block_sparse_moe.experts.1.up_proj.weight": "model-00004-of-00009.safetensors",
|
| 122 |
+
"model.layers.14.block_sparse_moe.experts.2.down_proj.weight": "model-00004-of-00009.safetensors",
|
| 123 |
+
"model.layers.14.block_sparse_moe.experts.2.gate_proj.weight": "model-00004-of-00009.safetensors",
|
| 124 |
+
"model.layers.14.block_sparse_moe.experts.2.up_proj.weight": "model-00004-of-00009.safetensors",
|
| 125 |
+
"model.layers.14.block_sparse_moe.gate.weight": "model-00004-of-00009.safetensors",
|
| 126 |
+
"model.layers.14.input_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 127 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 128 |
+
"model.layers.14.post_feedforward_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 129 |
+
"model.layers.14.pre_feedforward_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 130 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
|
| 131 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
|
| 132 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
|
| 133 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
|
| 134 |
+
"model.layers.15.block_sparse_moe.experts.0.down_proj.weight": "model-00004-of-00009.safetensors",
|
| 135 |
+
"model.layers.15.block_sparse_moe.experts.0.gate_proj.weight": "model-00004-of-00009.safetensors",
|
| 136 |
+
"model.layers.15.block_sparse_moe.experts.0.up_proj.weight": "model-00004-of-00009.safetensors",
|
| 137 |
+
"model.layers.15.block_sparse_moe.experts.1.down_proj.weight": "model-00004-of-00009.safetensors",
|
| 138 |
+
"model.layers.15.block_sparse_moe.experts.1.gate_proj.weight": "model-00004-of-00009.safetensors",
|
| 139 |
+
"model.layers.15.block_sparse_moe.experts.1.up_proj.weight": "model-00004-of-00009.safetensors",
|
| 140 |
+
"model.layers.15.block_sparse_moe.experts.2.down_proj.weight": "model-00004-of-00009.safetensors",
|
| 141 |
+
"model.layers.15.block_sparse_moe.experts.2.gate_proj.weight": "model-00004-of-00009.safetensors",
|
| 142 |
+
"model.layers.15.block_sparse_moe.experts.2.up_proj.weight": "model-00004-of-00009.safetensors",
|
| 143 |
+
"model.layers.15.block_sparse_moe.gate.weight": "model-00004-of-00009.safetensors",
|
| 144 |
+
"model.layers.15.input_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 145 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 146 |
+
"model.layers.15.post_feedforward_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 147 |
+
"model.layers.15.pre_feedforward_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 148 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
|
| 149 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
|
| 150 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
|
| 151 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
|
| 152 |
+
"model.layers.16.block_sparse_moe.experts.0.down_proj.weight": "model-00004-of-00009.safetensors",
|
| 153 |
+
"model.layers.16.block_sparse_moe.experts.0.gate_proj.weight": "model-00004-of-00009.safetensors",
|
| 154 |
+
"model.layers.16.block_sparse_moe.experts.0.up_proj.weight": "model-00004-of-00009.safetensors",
|
| 155 |
+
"model.layers.16.block_sparse_moe.experts.1.down_proj.weight": "model-00004-of-00009.safetensors",
|
| 156 |
+
"model.layers.16.block_sparse_moe.experts.1.gate_proj.weight": "model-00004-of-00009.safetensors",
|
| 157 |
+
"model.layers.16.block_sparse_moe.experts.1.up_proj.weight": "model-00004-of-00009.safetensors",
|
| 158 |
+
"model.layers.16.block_sparse_moe.experts.2.down_proj.weight": "model-00004-of-00009.safetensors",
|
| 159 |
+
"model.layers.16.block_sparse_moe.experts.2.gate_proj.weight": "model-00004-of-00009.safetensors",
|
| 160 |
+
"model.layers.16.block_sparse_moe.experts.2.up_proj.weight": "model-00004-of-00009.safetensors",
|
| 161 |
+
"model.layers.16.block_sparse_moe.gate.weight": "model-00004-of-00009.safetensors",
|
| 162 |
+
"model.layers.16.input_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 163 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 164 |
+
"model.layers.16.post_feedforward_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 165 |
+
"model.layers.16.pre_feedforward_layernorm.weight": "model-00004-of-00009.safetensors",
|
| 166 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
|
| 167 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
|
| 168 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
|
| 169 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
|
| 170 |
+
"model.layers.17.block_sparse_moe.experts.0.down_proj.weight": "model-00004-of-00009.safetensors",
|
| 171 |
+
"model.layers.17.block_sparse_moe.experts.0.gate_proj.weight": "model-00004-of-00009.safetensors",
|
| 172 |
+
"model.layers.17.block_sparse_moe.experts.0.up_proj.weight": "model-00004-of-00009.safetensors",
|
| 173 |
+
"model.layers.17.block_sparse_moe.experts.1.down_proj.weight": "model-00004-of-00009.safetensors",
|
| 174 |
+
"model.layers.17.block_sparse_moe.experts.1.gate_proj.weight": "model-00004-of-00009.safetensors",
|
| 175 |
+
"model.layers.17.block_sparse_moe.experts.1.up_proj.weight": "model-00004-of-00009.safetensors",
|
| 176 |
+
"model.layers.17.block_sparse_moe.experts.2.down_proj.weight": "model-00005-of-00009.safetensors",
|
| 177 |
+
"model.layers.17.block_sparse_moe.experts.2.gate_proj.weight": "model-00004-of-00009.safetensors",
|
| 178 |
+
"model.layers.17.block_sparse_moe.experts.2.up_proj.weight": "model-00005-of-00009.safetensors",
|
| 179 |
+
"model.layers.17.block_sparse_moe.gate.weight": "model-00004-of-00009.safetensors",
|
| 180 |
+
"model.layers.17.input_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 181 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 182 |
+
"model.layers.17.post_feedforward_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 183 |
+
"model.layers.17.pre_feedforward_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 184 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
|
| 185 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
|
| 186 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
|
| 187 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
|
| 188 |
+
"model.layers.18.block_sparse_moe.experts.0.down_proj.weight": "model-00005-of-00009.safetensors",
|
| 189 |
+
"model.layers.18.block_sparse_moe.experts.0.gate_proj.weight": "model-00005-of-00009.safetensors",
|
| 190 |
+
"model.layers.18.block_sparse_moe.experts.0.up_proj.weight": "model-00005-of-00009.safetensors",
|
| 191 |
+
"model.layers.18.block_sparse_moe.experts.1.down_proj.weight": "model-00005-of-00009.safetensors",
|
| 192 |
+
"model.layers.18.block_sparse_moe.experts.1.gate_proj.weight": "model-00005-of-00009.safetensors",
|
| 193 |
+
"model.layers.18.block_sparse_moe.experts.1.up_proj.weight": "model-00005-of-00009.safetensors",
|
| 194 |
+
"model.layers.18.block_sparse_moe.experts.2.down_proj.weight": "model-00005-of-00009.safetensors",
|
| 195 |
+
"model.layers.18.block_sparse_moe.experts.2.gate_proj.weight": "model-00005-of-00009.safetensors",
|
| 196 |
+
"model.layers.18.block_sparse_moe.experts.2.up_proj.weight": "model-00005-of-00009.safetensors",
|
| 197 |
+
"model.layers.18.block_sparse_moe.gate.weight": "model-00005-of-00009.safetensors",
|
| 198 |
+
"model.layers.18.input_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 199 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 200 |
+
"model.layers.18.post_feedforward_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 201 |
+
"model.layers.18.pre_feedforward_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 202 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
|
| 203 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
|
| 204 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
|
| 205 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
|
| 206 |
+
"model.layers.19.block_sparse_moe.experts.0.down_proj.weight": "model-00005-of-00009.safetensors",
|
| 207 |
+
"model.layers.19.block_sparse_moe.experts.0.gate_proj.weight": "model-00005-of-00009.safetensors",
|
| 208 |
+
"model.layers.19.block_sparse_moe.experts.0.up_proj.weight": "model-00005-of-00009.safetensors",
|
| 209 |
+
"model.layers.19.block_sparse_moe.experts.1.down_proj.weight": "model-00005-of-00009.safetensors",
|
| 210 |
+
"model.layers.19.block_sparse_moe.experts.1.gate_proj.weight": "model-00005-of-00009.safetensors",
|
| 211 |
+
"model.layers.19.block_sparse_moe.experts.1.up_proj.weight": "model-00005-of-00009.safetensors",
|
| 212 |
+
"model.layers.19.block_sparse_moe.experts.2.down_proj.weight": "model-00005-of-00009.safetensors",
|
| 213 |
+
"model.layers.19.block_sparse_moe.experts.2.gate_proj.weight": "model-00005-of-00009.safetensors",
|
| 214 |
+
"model.layers.19.block_sparse_moe.experts.2.up_proj.weight": "model-00005-of-00009.safetensors",
|
| 215 |
+
"model.layers.19.block_sparse_moe.gate.weight": "model-00005-of-00009.safetensors",
|
| 216 |
+
"model.layers.19.input_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 217 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 218 |
+
"model.layers.19.post_feedforward_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 219 |
+
"model.layers.19.pre_feedforward_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 220 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
|
| 221 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
|
| 222 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
|
| 223 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
|
| 224 |
+
"model.layers.2.block_sparse_moe.experts.0.down_proj.weight": "model-00001-of-00009.safetensors",
|
| 225 |
+
"model.layers.2.block_sparse_moe.experts.0.gate_proj.weight": "model-00001-of-00009.safetensors",
|
| 226 |
+
"model.layers.2.block_sparse_moe.experts.0.up_proj.weight": "model-00001-of-00009.safetensors",
|
| 227 |
+
"model.layers.2.block_sparse_moe.experts.1.down_proj.weight": "model-00001-of-00009.safetensors",
|
| 228 |
+
"model.layers.2.block_sparse_moe.experts.1.gate_proj.weight": "model-00001-of-00009.safetensors",
|
| 229 |
+
"model.layers.2.block_sparse_moe.experts.1.up_proj.weight": "model-00001-of-00009.safetensors",
|
| 230 |
+
"model.layers.2.block_sparse_moe.experts.2.down_proj.weight": "model-00001-of-00009.safetensors",
|
| 231 |
+
"model.layers.2.block_sparse_moe.experts.2.gate_proj.weight": "model-00001-of-00009.safetensors",
|
| 232 |
+
"model.layers.2.block_sparse_moe.experts.2.up_proj.weight": "model-00001-of-00009.safetensors",
|
| 233 |
+
"model.layers.2.block_sparse_moe.gate.weight": "model-00001-of-00009.safetensors",
|
| 234 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00009.safetensors",
|
| 235 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
|
| 236 |
+
"model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00009.safetensors",
|
| 237 |
+
"model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00009.safetensors",
|
| 238 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
|
| 239 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
|
| 240 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
|
| 241 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
|
| 242 |
+
"model.layers.20.block_sparse_moe.experts.0.down_proj.weight": "model-00005-of-00009.safetensors",
|
| 243 |
+
"model.layers.20.block_sparse_moe.experts.0.gate_proj.weight": "model-00005-of-00009.safetensors",
|
| 244 |
+
"model.layers.20.block_sparse_moe.experts.0.up_proj.weight": "model-00005-of-00009.safetensors",
|
| 245 |
+
"model.layers.20.block_sparse_moe.experts.1.down_proj.weight": "model-00005-of-00009.safetensors",
|
| 246 |
+
"model.layers.20.block_sparse_moe.experts.1.gate_proj.weight": "model-00005-of-00009.safetensors",
|
| 247 |
+
"model.layers.20.block_sparse_moe.experts.1.up_proj.weight": "model-00005-of-00009.safetensors",
|
| 248 |
+
"model.layers.20.block_sparse_moe.experts.2.down_proj.weight": "model-00005-of-00009.safetensors",
|
| 249 |
+
"model.layers.20.block_sparse_moe.experts.2.gate_proj.weight": "model-00005-of-00009.safetensors",
|
| 250 |
+
"model.layers.20.block_sparse_moe.experts.2.up_proj.weight": "model-00005-of-00009.safetensors",
|
| 251 |
+
"model.layers.20.block_sparse_moe.gate.weight": "model-00005-of-00009.safetensors",
|
| 252 |
+
"model.layers.20.input_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 253 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 254 |
+
"model.layers.20.post_feedforward_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 255 |
+
"model.layers.20.pre_feedforward_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 256 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
|
| 257 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
|
| 258 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
|
| 259 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
|
| 260 |
+
"model.layers.21.block_sparse_moe.experts.0.down_proj.weight": "model-00005-of-00009.safetensors",
|
| 261 |
+
"model.layers.21.block_sparse_moe.experts.0.gate_proj.weight": "model-00005-of-00009.safetensors",
|
| 262 |
+
"model.layers.21.block_sparse_moe.experts.0.up_proj.weight": "model-00005-of-00009.safetensors",
|
| 263 |
+
"model.layers.21.block_sparse_moe.experts.1.down_proj.weight": "model-00005-of-00009.safetensors",
|
| 264 |
+
"model.layers.21.block_sparse_moe.experts.1.gate_proj.weight": "model-00005-of-00009.safetensors",
|
| 265 |
+
"model.layers.21.block_sparse_moe.experts.1.up_proj.weight": "model-00005-of-00009.safetensors",
|
| 266 |
+
"model.layers.21.block_sparse_moe.experts.2.down_proj.weight": "model-00005-of-00009.safetensors",
|
| 267 |
+
"model.layers.21.block_sparse_moe.experts.2.gate_proj.weight": "model-00005-of-00009.safetensors",
|
| 268 |
+
"model.layers.21.block_sparse_moe.experts.2.up_proj.weight": "model-00005-of-00009.safetensors",
|
| 269 |
+
"model.layers.21.block_sparse_moe.gate.weight": "model-00005-of-00009.safetensors",
|
| 270 |
+
"model.layers.21.input_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 271 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 272 |
+
"model.layers.21.post_feedforward_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 273 |
+
"model.layers.21.pre_feedforward_layernorm.weight": "model-00005-of-00009.safetensors",
|
| 274 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
|
| 275 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
|
| 276 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
|
| 277 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
|
| 278 |
+
"model.layers.22.block_sparse_moe.experts.0.down_proj.weight": "model-00005-of-00009.safetensors",
|
| 279 |
+
"model.layers.22.block_sparse_moe.experts.0.gate_proj.weight": "model-00005-of-00009.safetensors",
|
| 280 |
+
"model.layers.22.block_sparse_moe.experts.0.up_proj.weight": "model-00005-of-00009.safetensors",
|
| 281 |
+
"model.layers.22.block_sparse_moe.experts.1.down_proj.weight": "model-00005-of-00009.safetensors",
|
| 282 |
+
"model.layers.22.block_sparse_moe.experts.1.gate_proj.weight": "model-00005-of-00009.safetensors",
|
| 283 |
+
"model.layers.22.block_sparse_moe.experts.1.up_proj.weight": "model-00005-of-00009.safetensors",
|
| 284 |
+
"model.layers.22.block_sparse_moe.experts.2.down_proj.weight": "model-00006-of-00009.safetensors",
|
| 285 |
+
"model.layers.22.block_sparse_moe.experts.2.gate_proj.weight": "model-00006-of-00009.safetensors",
|
| 286 |
+
"model.layers.22.block_sparse_moe.experts.2.up_proj.weight": "model-00006-of-00009.safetensors",
|
| 287 |
+
"model.layers.22.block_sparse_moe.gate.weight": "model-00005-of-00009.safetensors",
|
| 288 |
+
"model.layers.22.input_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 289 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 290 |
+
"model.layers.22.post_feedforward_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 291 |
+
"model.layers.22.pre_feedforward_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 292 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
|
| 293 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
|
| 294 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
|
| 295 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
|
| 296 |
+
"model.layers.23.block_sparse_moe.experts.0.down_proj.weight": "model-00006-of-00009.safetensors",
|
| 297 |
+
"model.layers.23.block_sparse_moe.experts.0.gate_proj.weight": "model-00006-of-00009.safetensors",
|
| 298 |
+
"model.layers.23.block_sparse_moe.experts.0.up_proj.weight": "model-00006-of-00009.safetensors",
|
| 299 |
+
"model.layers.23.block_sparse_moe.experts.1.down_proj.weight": "model-00006-of-00009.safetensors",
|
| 300 |
+
"model.layers.23.block_sparse_moe.experts.1.gate_proj.weight": "model-00006-of-00009.safetensors",
|
| 301 |
+
"model.layers.23.block_sparse_moe.experts.1.up_proj.weight": "model-00006-of-00009.safetensors",
|
| 302 |
+
"model.layers.23.block_sparse_moe.experts.2.down_proj.weight": "model-00006-of-00009.safetensors",
|
| 303 |
+
"model.layers.23.block_sparse_moe.experts.2.gate_proj.weight": "model-00006-of-00009.safetensors",
|
| 304 |
+
"model.layers.23.block_sparse_moe.experts.2.up_proj.weight": "model-00006-of-00009.safetensors",
|
| 305 |
+
"model.layers.23.block_sparse_moe.gate.weight": "model-00006-of-00009.safetensors",
|
| 306 |
+
"model.layers.23.input_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 307 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 308 |
+
"model.layers.23.post_feedforward_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 309 |
+
"model.layers.23.pre_feedforward_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 310 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
|
| 311 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
|
| 312 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
|
| 313 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
|
| 314 |
+
"model.layers.24.block_sparse_moe.experts.0.down_proj.weight": "model-00006-of-00009.safetensors",
|
| 315 |
+
"model.layers.24.block_sparse_moe.experts.0.gate_proj.weight": "model-00006-of-00009.safetensors",
|
| 316 |
+
"model.layers.24.block_sparse_moe.experts.0.up_proj.weight": "model-00006-of-00009.safetensors",
|
| 317 |
+
"model.layers.24.block_sparse_moe.experts.1.down_proj.weight": "model-00006-of-00009.safetensors",
|
| 318 |
+
"model.layers.24.block_sparse_moe.experts.1.gate_proj.weight": "model-00006-of-00009.safetensors",
|
| 319 |
+
"model.layers.24.block_sparse_moe.experts.1.up_proj.weight": "model-00006-of-00009.safetensors",
|
| 320 |
+
"model.layers.24.block_sparse_moe.experts.2.down_proj.weight": "model-00006-of-00009.safetensors",
|
| 321 |
+
"model.layers.24.block_sparse_moe.experts.2.gate_proj.weight": "model-00006-of-00009.safetensors",
|
| 322 |
+
"model.layers.24.block_sparse_moe.experts.2.up_proj.weight": "model-00006-of-00009.safetensors",
|
| 323 |
+
"model.layers.24.block_sparse_moe.gate.weight": "model-00006-of-00009.safetensors",
|
| 324 |
+
"model.layers.24.input_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 325 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 326 |
+
"model.layers.24.post_feedforward_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 327 |
+
"model.layers.24.pre_feedforward_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 328 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
|
| 329 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
|
| 330 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
|
| 331 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
|
| 332 |
+
"model.layers.25.block_sparse_moe.experts.0.down_proj.weight": "model-00006-of-00009.safetensors",
|
| 333 |
+
"model.layers.25.block_sparse_moe.experts.0.gate_proj.weight": "model-00006-of-00009.safetensors",
|
| 334 |
+
"model.layers.25.block_sparse_moe.experts.0.up_proj.weight": "model-00006-of-00009.safetensors",
|
| 335 |
+
"model.layers.25.block_sparse_moe.experts.1.down_proj.weight": "model-00006-of-00009.safetensors",
|
| 336 |
+
"model.layers.25.block_sparse_moe.experts.1.gate_proj.weight": "model-00006-of-00009.safetensors",
|
| 337 |
+
"model.layers.25.block_sparse_moe.experts.1.up_proj.weight": "model-00006-of-00009.safetensors",
|
| 338 |
+
"model.layers.25.block_sparse_moe.experts.2.down_proj.weight": "model-00006-of-00009.safetensors",
|
| 339 |
+
"model.layers.25.block_sparse_moe.experts.2.gate_proj.weight": "model-00006-of-00009.safetensors",
|
| 340 |
+
"model.layers.25.block_sparse_moe.experts.2.up_proj.weight": "model-00006-of-00009.safetensors",
|
| 341 |
+
"model.layers.25.block_sparse_moe.gate.weight": "model-00006-of-00009.safetensors",
|
| 342 |
+
"model.layers.25.input_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 343 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 344 |
+
"model.layers.25.post_feedforward_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 345 |
+
"model.layers.25.pre_feedforward_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 346 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
|
| 347 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
|
| 348 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
|
| 349 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
|
| 350 |
+
"model.layers.26.block_sparse_moe.experts.0.down_proj.weight": "model-00006-of-00009.safetensors",
|
| 351 |
+
"model.layers.26.block_sparse_moe.experts.0.gate_proj.weight": "model-00006-of-00009.safetensors",
|
| 352 |
+
"model.layers.26.block_sparse_moe.experts.0.up_proj.weight": "model-00006-of-00009.safetensors",
|
| 353 |
+
"model.layers.26.block_sparse_moe.experts.1.down_proj.weight": "model-00006-of-00009.safetensors",
|
| 354 |
+
"model.layers.26.block_sparse_moe.experts.1.gate_proj.weight": "model-00006-of-00009.safetensors",
|
| 355 |
+
"model.layers.26.block_sparse_moe.experts.1.up_proj.weight": "model-00006-of-00009.safetensors",
|
| 356 |
+
"model.layers.26.block_sparse_moe.experts.2.down_proj.weight": "model-00006-of-00009.safetensors",
|
| 357 |
+
"model.layers.26.block_sparse_moe.experts.2.gate_proj.weight": "model-00006-of-00009.safetensors",
|
| 358 |
+
"model.layers.26.block_sparse_moe.experts.2.up_proj.weight": "model-00006-of-00009.safetensors",
|
| 359 |
+
"model.layers.26.block_sparse_moe.gate.weight": "model-00006-of-00009.safetensors",
|
| 360 |
+
"model.layers.26.input_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 361 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 362 |
+
"model.layers.26.post_feedforward_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 363 |
+
"model.layers.26.pre_feedforward_layernorm.weight": "model-00006-of-00009.safetensors",
|
| 364 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
|
| 365 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
|
| 366 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
|
| 367 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
|
| 368 |
+
"model.layers.27.block_sparse_moe.experts.0.down_proj.weight": "model-00006-of-00009.safetensors",
|
| 369 |
+
"model.layers.27.block_sparse_moe.experts.0.gate_proj.weight": "model-00006-of-00009.safetensors",
|
| 370 |
+
"model.layers.27.block_sparse_moe.experts.0.up_proj.weight": "model-00006-of-00009.safetensors",
|
| 371 |
+
"model.layers.27.block_sparse_moe.experts.1.down_proj.weight": "model-00007-of-00009.safetensors",
|
| 372 |
+
"model.layers.27.block_sparse_moe.experts.1.gate_proj.weight": "model-00006-of-00009.safetensors",
|
| 373 |
+
"model.layers.27.block_sparse_moe.experts.1.up_proj.weight": "model-00006-of-00009.safetensors",
|
| 374 |
+
"model.layers.27.block_sparse_moe.experts.2.down_proj.weight": "model-00007-of-00009.safetensors",
|
| 375 |
+
"model.layers.27.block_sparse_moe.experts.2.gate_proj.weight": "model-00007-of-00009.safetensors",
|
| 376 |
+
"model.layers.27.block_sparse_moe.experts.2.up_proj.weight": "model-00007-of-00009.safetensors",
|
| 377 |
+
"model.layers.27.block_sparse_moe.gate.weight": "model-00006-of-00009.safetensors",
|
| 378 |
+
"model.layers.27.input_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 379 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 380 |
+
"model.layers.27.post_feedforward_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 381 |
+
"model.layers.27.pre_feedforward_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 382 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
|
| 383 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
|
| 384 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
|
| 385 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
|
| 386 |
+
"model.layers.28.block_sparse_moe.experts.0.down_proj.weight": "model-00007-of-00009.safetensors",
|
| 387 |
+
"model.layers.28.block_sparse_moe.experts.0.gate_proj.weight": "model-00007-of-00009.safetensors",
|
| 388 |
+
"model.layers.28.block_sparse_moe.experts.0.up_proj.weight": "model-00007-of-00009.safetensors",
|
| 389 |
+
"model.layers.28.block_sparse_moe.experts.1.down_proj.weight": "model-00007-of-00009.safetensors",
|
| 390 |
+
"model.layers.28.block_sparse_moe.experts.1.gate_proj.weight": "model-00007-of-00009.safetensors",
|
| 391 |
+
"model.layers.28.block_sparse_moe.experts.1.up_proj.weight": "model-00007-of-00009.safetensors",
|
| 392 |
+
"model.layers.28.block_sparse_moe.experts.2.down_proj.weight": "model-00007-of-00009.safetensors",
|
| 393 |
+
"model.layers.28.block_sparse_moe.experts.2.gate_proj.weight": "model-00007-of-00009.safetensors",
|
| 394 |
+
"model.layers.28.block_sparse_moe.experts.2.up_proj.weight": "model-00007-of-00009.safetensors",
|
| 395 |
+
"model.layers.28.block_sparse_moe.gate.weight": "model-00007-of-00009.safetensors",
|
| 396 |
+
"model.layers.28.input_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 397 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 398 |
+
"model.layers.28.post_feedforward_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 399 |
+
"model.layers.28.pre_feedforward_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 400 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
|
| 401 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
|
| 402 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
|
| 403 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
|
| 404 |
+
"model.layers.29.block_sparse_moe.experts.0.down_proj.weight": "model-00007-of-00009.safetensors",
|
| 405 |
+
"model.layers.29.block_sparse_moe.experts.0.gate_proj.weight": "model-00007-of-00009.safetensors",
|
| 406 |
+
"model.layers.29.block_sparse_moe.experts.0.up_proj.weight": "model-00007-of-00009.safetensors",
|
| 407 |
+
"model.layers.29.block_sparse_moe.experts.1.down_proj.weight": "model-00007-of-00009.safetensors",
|
| 408 |
+
"model.layers.29.block_sparse_moe.experts.1.gate_proj.weight": "model-00007-of-00009.safetensors",
|
| 409 |
+
"model.layers.29.block_sparse_moe.experts.1.up_proj.weight": "model-00007-of-00009.safetensors",
|
| 410 |
+
"model.layers.29.block_sparse_moe.experts.2.down_proj.weight": "model-00007-of-00009.safetensors",
|
| 411 |
+
"model.layers.29.block_sparse_moe.experts.2.gate_proj.weight": "model-00007-of-00009.safetensors",
|
| 412 |
+
"model.layers.29.block_sparse_moe.experts.2.up_proj.weight": "model-00007-of-00009.safetensors",
|
| 413 |
+
"model.layers.29.block_sparse_moe.gate.weight": "model-00007-of-00009.safetensors",
|
| 414 |
+
"model.layers.29.input_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 415 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 416 |
+
"model.layers.29.post_feedforward_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 417 |
+
"model.layers.29.pre_feedforward_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 418 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
|
| 419 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
|
| 420 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
|
| 421 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
|
| 422 |
+
"model.layers.3.block_sparse_moe.experts.0.down_proj.weight": "model-00002-of-00009.safetensors",
|
| 423 |
+
"model.layers.3.block_sparse_moe.experts.0.gate_proj.weight": "model-00002-of-00009.safetensors",
|
| 424 |
+
"model.layers.3.block_sparse_moe.experts.0.up_proj.weight": "model-00002-of-00009.safetensors",
|
| 425 |
+
"model.layers.3.block_sparse_moe.experts.1.down_proj.weight": "model-00002-of-00009.safetensors",
|
| 426 |
+
"model.layers.3.block_sparse_moe.experts.1.gate_proj.weight": "model-00002-of-00009.safetensors",
|
| 427 |
+
"model.layers.3.block_sparse_moe.experts.1.up_proj.weight": "model-00002-of-00009.safetensors",
|
| 428 |
+
"model.layers.3.block_sparse_moe.experts.2.down_proj.weight": "model-00002-of-00009.safetensors",
|
| 429 |
+
"model.layers.3.block_sparse_moe.experts.2.gate_proj.weight": "model-00002-of-00009.safetensors",
|
| 430 |
+
"model.layers.3.block_sparse_moe.experts.2.up_proj.weight": "model-00002-of-00009.safetensors",
|
| 431 |
+
"model.layers.3.block_sparse_moe.gate.weight": "model-00001-of-00009.safetensors",
|
| 432 |
+
"model.layers.3.input_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 433 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 434 |
+
"model.layers.3.post_feedforward_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 435 |
+
"model.layers.3.pre_feedforward_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 436 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
|
| 437 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
|
| 438 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
|
| 439 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
|
| 440 |
+
"model.layers.30.block_sparse_moe.experts.0.down_proj.weight": "model-00007-of-00009.safetensors",
|
| 441 |
+
"model.layers.30.block_sparse_moe.experts.0.gate_proj.weight": "model-00007-of-00009.safetensors",
|
| 442 |
+
"model.layers.30.block_sparse_moe.experts.0.up_proj.weight": "model-00007-of-00009.safetensors",
|
| 443 |
+
"model.layers.30.block_sparse_moe.experts.1.down_proj.weight": "model-00007-of-00009.safetensors",
|
| 444 |
+
"model.layers.30.block_sparse_moe.experts.1.gate_proj.weight": "model-00007-of-00009.safetensors",
|
| 445 |
+
"model.layers.30.block_sparse_moe.experts.1.up_proj.weight": "model-00007-of-00009.safetensors",
|
| 446 |
+
"model.layers.30.block_sparse_moe.experts.2.down_proj.weight": "model-00007-of-00009.safetensors",
|
| 447 |
+
"model.layers.30.block_sparse_moe.experts.2.gate_proj.weight": "model-00007-of-00009.safetensors",
|
| 448 |
+
"model.layers.30.block_sparse_moe.experts.2.up_proj.weight": "model-00007-of-00009.safetensors",
|
| 449 |
+
"model.layers.30.block_sparse_moe.gate.weight": "model-00007-of-00009.safetensors",
|
| 450 |
+
"model.layers.30.input_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 451 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 452 |
+
"model.layers.30.post_feedforward_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 453 |
+
"model.layers.30.pre_feedforward_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 454 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
|
| 455 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
|
| 456 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
|
| 457 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
|
| 458 |
+
"model.layers.31.block_sparse_moe.experts.0.down_proj.weight": "model-00007-of-00009.safetensors",
|
| 459 |
+
"model.layers.31.block_sparse_moe.experts.0.gate_proj.weight": "model-00007-of-00009.safetensors",
|
| 460 |
+
"model.layers.31.block_sparse_moe.experts.0.up_proj.weight": "model-00007-of-00009.safetensors",
|
| 461 |
+
"model.layers.31.block_sparse_moe.experts.1.down_proj.weight": "model-00007-of-00009.safetensors",
|
| 462 |
+
"model.layers.31.block_sparse_moe.experts.1.gate_proj.weight": "model-00007-of-00009.safetensors",
|
| 463 |
+
"model.layers.31.block_sparse_moe.experts.1.up_proj.weight": "model-00007-of-00009.safetensors",
|
| 464 |
+
"model.layers.31.block_sparse_moe.experts.2.down_proj.weight": "model-00007-of-00009.safetensors",
|
| 465 |
+
"model.layers.31.block_sparse_moe.experts.2.gate_proj.weight": "model-00007-of-00009.safetensors",
|
| 466 |
+
"model.layers.31.block_sparse_moe.experts.2.up_proj.weight": "model-00007-of-00009.safetensors",
|
| 467 |
+
"model.layers.31.block_sparse_moe.gate.weight": "model-00007-of-00009.safetensors",
|
| 468 |
+
"model.layers.31.input_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 469 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 470 |
+
"model.layers.31.post_feedforward_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 471 |
+
"model.layers.31.pre_feedforward_layernorm.weight": "model-00007-of-00009.safetensors",
|
| 472 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
|
| 473 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
|
| 474 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
|
| 475 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
|
| 476 |
+
"model.layers.32.block_sparse_moe.experts.0.down_proj.weight": "model-00007-of-00009.safetensors",
|
| 477 |
+
"model.layers.32.block_sparse_moe.experts.0.gate_proj.weight": "model-00007-of-00009.safetensors",
|
| 478 |
+
"model.layers.32.block_sparse_moe.experts.0.up_proj.weight": "model-00007-of-00009.safetensors",
|
| 479 |
+
"model.layers.32.block_sparse_moe.experts.1.down_proj.weight": "model-00008-of-00009.safetensors",
|
| 480 |
+
"model.layers.32.block_sparse_moe.experts.1.gate_proj.weight": "model-00007-of-00009.safetensors",
|
| 481 |
+
"model.layers.32.block_sparse_moe.experts.1.up_proj.weight": "model-00008-of-00009.safetensors",
|
| 482 |
+
"model.layers.32.block_sparse_moe.experts.2.down_proj.weight": "model-00008-of-00009.safetensors",
|
| 483 |
+
"model.layers.32.block_sparse_moe.experts.2.gate_proj.weight": "model-00008-of-00009.safetensors",
|
| 484 |
+
"model.layers.32.block_sparse_moe.experts.2.up_proj.weight": "model-00008-of-00009.safetensors",
|
| 485 |
+
"model.layers.32.block_sparse_moe.gate.weight": "model-00007-of-00009.safetensors",
|
| 486 |
+
"model.layers.32.input_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 487 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 488 |
+
"model.layers.32.post_feedforward_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 489 |
+
"model.layers.32.pre_feedforward_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 490 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
|
| 491 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
|
| 492 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
|
| 493 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
|
| 494 |
+
"model.layers.33.block_sparse_moe.experts.0.down_proj.weight": "model-00008-of-00009.safetensors",
|
| 495 |
+
"model.layers.33.block_sparse_moe.experts.0.gate_proj.weight": "model-00008-of-00009.safetensors",
|
| 496 |
+
"model.layers.33.block_sparse_moe.experts.0.up_proj.weight": "model-00008-of-00009.safetensors",
|
| 497 |
+
"model.layers.33.block_sparse_moe.experts.1.down_proj.weight": "model-00008-of-00009.safetensors",
|
| 498 |
+
"model.layers.33.block_sparse_moe.experts.1.gate_proj.weight": "model-00008-of-00009.safetensors",
|
| 499 |
+
"model.layers.33.block_sparse_moe.experts.1.up_proj.weight": "model-00008-of-00009.safetensors",
|
| 500 |
+
"model.layers.33.block_sparse_moe.experts.2.down_proj.weight": "model-00008-of-00009.safetensors",
|
| 501 |
+
"model.layers.33.block_sparse_moe.experts.2.gate_proj.weight": "model-00008-of-00009.safetensors",
|
| 502 |
+
"model.layers.33.block_sparse_moe.experts.2.up_proj.weight": "model-00008-of-00009.safetensors",
|
| 503 |
+
"model.layers.33.block_sparse_moe.gate.weight": "model-00008-of-00009.safetensors",
|
| 504 |
+
"model.layers.33.input_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 505 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 506 |
+
"model.layers.33.post_feedforward_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 507 |
+
"model.layers.33.pre_feedforward_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 508 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
|
| 509 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
|
| 510 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
|
| 511 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
|
| 512 |
+
"model.layers.34.block_sparse_moe.experts.0.down_proj.weight": "model-00008-of-00009.safetensors",
|
| 513 |
+
"model.layers.34.block_sparse_moe.experts.0.gate_proj.weight": "model-00008-of-00009.safetensors",
|
| 514 |
+
"model.layers.34.block_sparse_moe.experts.0.up_proj.weight": "model-00008-of-00009.safetensors",
|
| 515 |
+
"model.layers.34.block_sparse_moe.experts.1.down_proj.weight": "model-00008-of-00009.safetensors",
|
| 516 |
+
"model.layers.34.block_sparse_moe.experts.1.gate_proj.weight": "model-00008-of-00009.safetensors",
|
| 517 |
+
"model.layers.34.block_sparse_moe.experts.1.up_proj.weight": "model-00008-of-00009.safetensors",
|
| 518 |
+
"model.layers.34.block_sparse_moe.experts.2.down_proj.weight": "model-00008-of-00009.safetensors",
|
| 519 |
+
"model.layers.34.block_sparse_moe.experts.2.gate_proj.weight": "model-00008-of-00009.safetensors",
|
| 520 |
+
"model.layers.34.block_sparse_moe.experts.2.up_proj.weight": "model-00008-of-00009.safetensors",
|
| 521 |
+
"model.layers.34.block_sparse_moe.gate.weight": "model-00008-of-00009.safetensors",
|
| 522 |
+
"model.layers.34.input_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 523 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 524 |
+
"model.layers.34.post_feedforward_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 525 |
+
"model.layers.34.pre_feedforward_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 526 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
|
| 527 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
|
| 528 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
|
| 529 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
|
| 530 |
+
"model.layers.35.block_sparse_moe.experts.0.down_proj.weight": "model-00008-of-00009.safetensors",
|
| 531 |
+
"model.layers.35.block_sparse_moe.experts.0.gate_proj.weight": "model-00008-of-00009.safetensors",
|
| 532 |
+
"model.layers.35.block_sparse_moe.experts.0.up_proj.weight": "model-00008-of-00009.safetensors",
|
| 533 |
+
"model.layers.35.block_sparse_moe.experts.1.down_proj.weight": "model-00008-of-00009.safetensors",
|
| 534 |
+
"model.layers.35.block_sparse_moe.experts.1.gate_proj.weight": "model-00008-of-00009.safetensors",
|
| 535 |
+
"model.layers.35.block_sparse_moe.experts.1.up_proj.weight": "model-00008-of-00009.safetensors",
|
| 536 |
+
"model.layers.35.block_sparse_moe.experts.2.down_proj.weight": "model-00008-of-00009.safetensors",
|
| 537 |
+
"model.layers.35.block_sparse_moe.experts.2.gate_proj.weight": "model-00008-of-00009.safetensors",
|
| 538 |
+
"model.layers.35.block_sparse_moe.experts.2.up_proj.weight": "model-00008-of-00009.safetensors",
|
| 539 |
+
"model.layers.35.block_sparse_moe.gate.weight": "model-00008-of-00009.safetensors",
|
| 540 |
+
"model.layers.35.input_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 541 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 542 |
+
"model.layers.35.post_feedforward_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 543 |
+
"model.layers.35.pre_feedforward_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 544 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
|
| 545 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
|
| 546 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
|
| 547 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
|
| 548 |
+
"model.layers.36.block_sparse_moe.experts.0.down_proj.weight": "model-00008-of-00009.safetensors",
|
| 549 |
+
"model.layers.36.block_sparse_moe.experts.0.gate_proj.weight": "model-00008-of-00009.safetensors",
|
| 550 |
+
"model.layers.36.block_sparse_moe.experts.0.up_proj.weight": "model-00008-of-00009.safetensors",
|
| 551 |
+
"model.layers.36.block_sparse_moe.experts.1.down_proj.weight": "model-00008-of-00009.safetensors",
|
| 552 |
+
"model.layers.36.block_sparse_moe.experts.1.gate_proj.weight": "model-00008-of-00009.safetensors",
|
| 553 |
+
"model.layers.36.block_sparse_moe.experts.1.up_proj.weight": "model-00008-of-00009.safetensors",
|
| 554 |
+
"model.layers.36.block_sparse_moe.experts.2.down_proj.weight": "model-00008-of-00009.safetensors",
|
| 555 |
+
"model.layers.36.block_sparse_moe.experts.2.gate_proj.weight": "model-00008-of-00009.safetensors",
|
| 556 |
+
"model.layers.36.block_sparse_moe.experts.2.up_proj.weight": "model-00008-of-00009.safetensors",
|
| 557 |
+
"model.layers.36.block_sparse_moe.gate.weight": "model-00008-of-00009.safetensors",
|
| 558 |
+
"model.layers.36.input_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 559 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 560 |
+
"model.layers.36.post_feedforward_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 561 |
+
"model.layers.36.pre_feedforward_layernorm.weight": "model-00008-of-00009.safetensors",
|
| 562 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
|
| 563 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
|
| 564 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
|
| 565 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
|
| 566 |
+
"model.layers.37.block_sparse_moe.experts.0.down_proj.weight": "model-00008-of-00009.safetensors",
|
| 567 |
+
"model.layers.37.block_sparse_moe.experts.0.gate_proj.weight": "model-00008-of-00009.safetensors",
|
| 568 |
+
"model.layers.37.block_sparse_moe.experts.0.up_proj.weight": "model-00008-of-00009.safetensors",
|
| 569 |
+
"model.layers.37.block_sparse_moe.experts.1.down_proj.weight": "model-00009-of-00009.safetensors",
|
| 570 |
+
"model.layers.37.block_sparse_moe.experts.1.gate_proj.weight": "model-00009-of-00009.safetensors",
|
| 571 |
+
"model.layers.37.block_sparse_moe.experts.1.up_proj.weight": "model-00009-of-00009.safetensors",
|
| 572 |
+
"model.layers.37.block_sparse_moe.experts.2.down_proj.weight": "model-00009-of-00009.safetensors",
|
| 573 |
+
"model.layers.37.block_sparse_moe.experts.2.gate_proj.weight": "model-00009-of-00009.safetensors",
|
| 574 |
+
"model.layers.37.block_sparse_moe.experts.2.up_proj.weight": "model-00009-of-00009.safetensors",
|
| 575 |
+
"model.layers.37.block_sparse_moe.gate.weight": "model-00008-of-00009.safetensors",
|
| 576 |
+
"model.layers.37.input_layernorm.weight": "model-00009-of-00009.safetensors",
|
| 577 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
|
| 578 |
+
"model.layers.37.post_feedforward_layernorm.weight": "model-00009-of-00009.safetensors",
|
| 579 |
+
"model.layers.37.pre_feedforward_layernorm.weight": "model-00009-of-00009.safetensors",
|
| 580 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
|
| 581 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
|
| 582 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
|
| 583 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
|
| 584 |
+
"model.layers.38.block_sparse_moe.experts.0.down_proj.weight": "model-00009-of-00009.safetensors",
|
| 585 |
+
"model.layers.38.block_sparse_moe.experts.0.gate_proj.weight": "model-00009-of-00009.safetensors",
|
| 586 |
+
"model.layers.38.block_sparse_moe.experts.0.up_proj.weight": "model-00009-of-00009.safetensors",
|
| 587 |
+
"model.layers.38.block_sparse_moe.experts.1.down_proj.weight": "model-00009-of-00009.safetensors",
|
| 588 |
+
"model.layers.38.block_sparse_moe.experts.1.gate_proj.weight": "model-00009-of-00009.safetensors",
|
| 589 |
+
"model.layers.38.block_sparse_moe.experts.1.up_proj.weight": "model-00009-of-00009.safetensors",
|
| 590 |
+
"model.layers.38.block_sparse_moe.experts.2.down_proj.weight": "model-00009-of-00009.safetensors",
|
| 591 |
+
"model.layers.38.block_sparse_moe.experts.2.gate_proj.weight": "model-00009-of-00009.safetensors",
|
| 592 |
+
"model.layers.38.block_sparse_moe.experts.2.up_proj.weight": "model-00009-of-00009.safetensors",
|
| 593 |
+
"model.layers.38.block_sparse_moe.gate.weight": "model-00009-of-00009.safetensors",
|
| 594 |
+
"model.layers.38.input_layernorm.weight": "model-00009-of-00009.safetensors",
|
| 595 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
|
| 596 |
+
"model.layers.38.post_feedforward_layernorm.weight": "model-00009-of-00009.safetensors",
|
| 597 |
+
"model.layers.38.pre_feedforward_layernorm.weight": "model-00009-of-00009.safetensors",
|
| 598 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00009-of-00009.safetensors",
|
| 599 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00009-of-00009.safetensors",
|
| 600 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00009-of-00009.safetensors",
|
| 601 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00009-of-00009.safetensors",
|
| 602 |
+
"model.layers.39.block_sparse_moe.experts.0.down_proj.weight": "model-00009-of-00009.safetensors",
|
| 603 |
+
"model.layers.39.block_sparse_moe.experts.0.gate_proj.weight": "model-00009-of-00009.safetensors",
|
| 604 |
+
"model.layers.39.block_sparse_moe.experts.0.up_proj.weight": "model-00009-of-00009.safetensors",
|
| 605 |
+
"model.layers.39.block_sparse_moe.experts.1.down_proj.weight": "model-00009-of-00009.safetensors",
|
| 606 |
+
"model.layers.39.block_sparse_moe.experts.1.gate_proj.weight": "model-00009-of-00009.safetensors",
|
| 607 |
+
"model.layers.39.block_sparse_moe.experts.1.up_proj.weight": "model-00009-of-00009.safetensors",
|
| 608 |
+
"model.layers.39.block_sparse_moe.experts.2.down_proj.weight": "model-00009-of-00009.safetensors",
|
| 609 |
+
"model.layers.39.block_sparse_moe.experts.2.gate_proj.weight": "model-00009-of-00009.safetensors",
|
| 610 |
+
"model.layers.39.block_sparse_moe.experts.2.up_proj.weight": "model-00009-of-00009.safetensors",
|
| 611 |
+
"model.layers.39.block_sparse_moe.gate.weight": "model-00009-of-00009.safetensors",
|
| 612 |
+
"model.layers.39.input_layernorm.weight": "model-00009-of-00009.safetensors",
|
| 613 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
|
| 614 |
+
"model.layers.39.post_feedforward_layernorm.weight": "model-00009-of-00009.safetensors",
|
| 615 |
+
"model.layers.39.pre_feedforward_layernorm.weight": "model-00009-of-00009.safetensors",
|
| 616 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00009-of-00009.safetensors",
|
| 617 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00009-of-00009.safetensors",
|
| 618 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00009-of-00009.safetensors",
|
| 619 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00009-of-00009.safetensors",
|
| 620 |
+
"model.layers.4.block_sparse_moe.experts.0.down_proj.weight": "model-00002-of-00009.safetensors",
|
| 621 |
+
"model.layers.4.block_sparse_moe.experts.0.gate_proj.weight": "model-00002-of-00009.safetensors",
|
| 622 |
+
"model.layers.4.block_sparse_moe.experts.0.up_proj.weight": "model-00002-of-00009.safetensors",
|
| 623 |
+
"model.layers.4.block_sparse_moe.experts.1.down_proj.weight": "model-00002-of-00009.safetensors",
|
| 624 |
+
"model.layers.4.block_sparse_moe.experts.1.gate_proj.weight": "model-00002-of-00009.safetensors",
|
| 625 |
+
"model.layers.4.block_sparse_moe.experts.1.up_proj.weight": "model-00002-of-00009.safetensors",
|
| 626 |
+
"model.layers.4.block_sparse_moe.experts.2.down_proj.weight": "model-00002-of-00009.safetensors",
|
| 627 |
+
"model.layers.4.block_sparse_moe.experts.2.gate_proj.weight": "model-00002-of-00009.safetensors",
|
| 628 |
+
"model.layers.4.block_sparse_moe.experts.2.up_proj.weight": "model-00002-of-00009.safetensors",
|
| 629 |
+
"model.layers.4.block_sparse_moe.gate.weight": "model-00002-of-00009.safetensors",
|
| 630 |
+
"model.layers.4.input_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 631 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 632 |
+
"model.layers.4.post_feedforward_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 633 |
+
"model.layers.4.pre_feedforward_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 634 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
|
| 635 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
|
| 636 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
|
| 637 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
|
| 638 |
+
"model.layers.40.block_sparse_moe.experts.0.down_proj.weight": "model-00009-of-00009.safetensors",
|
| 639 |
+
"model.layers.40.block_sparse_moe.experts.0.gate_proj.weight": "model-00009-of-00009.safetensors",
|
| 640 |
+
"model.layers.40.block_sparse_moe.experts.0.up_proj.weight": "model-00009-of-00009.safetensors",
|
| 641 |
+
"model.layers.40.block_sparse_moe.experts.1.down_proj.weight": "model-00009-of-00009.safetensors",
|
| 642 |
+
"model.layers.40.block_sparse_moe.experts.1.gate_proj.weight": "model-00009-of-00009.safetensors",
|
| 643 |
+
"model.layers.40.block_sparse_moe.experts.1.up_proj.weight": "model-00009-of-00009.safetensors",
|
| 644 |
+
"model.layers.40.block_sparse_moe.experts.2.down_proj.weight": "model-00009-of-00009.safetensors",
|
| 645 |
+
"model.layers.40.block_sparse_moe.experts.2.gate_proj.weight": "model-00009-of-00009.safetensors",
|
| 646 |
+
"model.layers.40.block_sparse_moe.experts.2.up_proj.weight": "model-00009-of-00009.safetensors",
|
| 647 |
+
"model.layers.40.block_sparse_moe.gate.weight": "model-00009-of-00009.safetensors",
|
| 648 |
+
"model.layers.40.input_layernorm.weight": "model-00009-of-00009.safetensors",
|
| 649 |
+
"model.layers.40.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
|
| 650 |
+
"model.layers.40.post_feedforward_layernorm.weight": "model-00009-of-00009.safetensors",
|
| 651 |
+
"model.layers.40.pre_feedforward_layernorm.weight": "model-00009-of-00009.safetensors",
|
| 652 |
+
"model.layers.40.self_attn.k_proj.weight": "model-00009-of-00009.safetensors",
|
| 653 |
+
"model.layers.40.self_attn.o_proj.weight": "model-00009-of-00009.safetensors",
|
| 654 |
+
"model.layers.40.self_attn.q_proj.weight": "model-00009-of-00009.safetensors",
|
| 655 |
+
"model.layers.40.self_attn.v_proj.weight": "model-00009-of-00009.safetensors",
|
| 656 |
+
"model.layers.41.block_sparse_moe.experts.0.down_proj.weight": "model-00009-of-00009.safetensors",
|
| 657 |
+
"model.layers.41.block_sparse_moe.experts.0.gate_proj.weight": "model-00009-of-00009.safetensors",
|
| 658 |
+
"model.layers.41.block_sparse_moe.experts.0.up_proj.weight": "model-00009-of-00009.safetensors",
|
| 659 |
+
"model.layers.41.block_sparse_moe.experts.1.down_proj.weight": "model-00009-of-00009.safetensors",
|
| 660 |
+
"model.layers.41.block_sparse_moe.experts.1.gate_proj.weight": "model-00009-of-00009.safetensors",
|
| 661 |
+
"model.layers.41.block_sparse_moe.experts.1.up_proj.weight": "model-00009-of-00009.safetensors",
|
| 662 |
+
"model.layers.41.block_sparse_moe.experts.2.down_proj.weight": "model-00009-of-00009.safetensors",
|
| 663 |
+
"model.layers.41.block_sparse_moe.experts.2.gate_proj.weight": "model-00009-of-00009.safetensors",
|
| 664 |
+
"model.layers.41.block_sparse_moe.experts.2.up_proj.weight": "model-00009-of-00009.safetensors",
|
| 665 |
+
"model.layers.41.block_sparse_moe.gate.weight": "model-00009-of-00009.safetensors",
|
| 666 |
+
"model.layers.41.input_layernorm.weight": "model-00009-of-00009.safetensors",
|
| 667 |
+
"model.layers.41.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
|
| 668 |
+
"model.layers.41.post_feedforward_layernorm.weight": "model-00009-of-00009.safetensors",
|
| 669 |
+
"model.layers.41.pre_feedforward_layernorm.weight": "model-00009-of-00009.safetensors",
|
| 670 |
+
"model.layers.41.self_attn.k_proj.weight": "model-00009-of-00009.safetensors",
|
| 671 |
+
"model.layers.41.self_attn.o_proj.weight": "model-00009-of-00009.safetensors",
|
| 672 |
+
"model.layers.41.self_attn.q_proj.weight": "model-00009-of-00009.safetensors",
|
| 673 |
+
"model.layers.41.self_attn.v_proj.weight": "model-00009-of-00009.safetensors",
|
| 674 |
+
"model.layers.5.block_sparse_moe.experts.0.down_proj.weight": "model-00002-of-00009.safetensors",
|
| 675 |
+
"model.layers.5.block_sparse_moe.experts.0.gate_proj.weight": "model-00002-of-00009.safetensors",
|
| 676 |
+
"model.layers.5.block_sparse_moe.experts.0.up_proj.weight": "model-00002-of-00009.safetensors",
|
| 677 |
+
"model.layers.5.block_sparse_moe.experts.1.down_proj.weight": "model-00002-of-00009.safetensors",
|
| 678 |
+
"model.layers.5.block_sparse_moe.experts.1.gate_proj.weight": "model-00002-of-00009.safetensors",
|
| 679 |
+
"model.layers.5.block_sparse_moe.experts.1.up_proj.weight": "model-00002-of-00009.safetensors",
|
| 680 |
+
"model.layers.5.block_sparse_moe.experts.2.down_proj.weight": "model-00002-of-00009.safetensors",
|
| 681 |
+
"model.layers.5.block_sparse_moe.experts.2.gate_proj.weight": "model-00002-of-00009.safetensors",
|
| 682 |
+
"model.layers.5.block_sparse_moe.experts.2.up_proj.weight": "model-00002-of-00009.safetensors",
|
| 683 |
+
"model.layers.5.block_sparse_moe.gate.weight": "model-00002-of-00009.safetensors",
|
| 684 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 685 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 686 |
+
"model.layers.5.post_feedforward_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 687 |
+
"model.layers.5.pre_feedforward_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 688 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
|
| 689 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
|
| 690 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
|
| 691 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
|
| 692 |
+
"model.layers.6.block_sparse_moe.experts.0.down_proj.weight": "model-00002-of-00009.safetensors",
|
| 693 |
+
"model.layers.6.block_sparse_moe.experts.0.gate_proj.weight": "model-00002-of-00009.safetensors",
|
| 694 |
+
"model.layers.6.block_sparse_moe.experts.0.up_proj.weight": "model-00002-of-00009.safetensors",
|
| 695 |
+
"model.layers.6.block_sparse_moe.experts.1.down_proj.weight": "model-00002-of-00009.safetensors",
|
| 696 |
+
"model.layers.6.block_sparse_moe.experts.1.gate_proj.weight": "model-00002-of-00009.safetensors",
|
| 697 |
+
"model.layers.6.block_sparse_moe.experts.1.up_proj.weight": "model-00002-of-00009.safetensors",
|
| 698 |
+
"model.layers.6.block_sparse_moe.experts.2.down_proj.weight": "model-00002-of-00009.safetensors",
|
| 699 |
+
"model.layers.6.block_sparse_moe.experts.2.gate_proj.weight": "model-00002-of-00009.safetensors",
|
| 700 |
+
"model.layers.6.block_sparse_moe.experts.2.up_proj.weight": "model-00002-of-00009.safetensors",
|
| 701 |
+
"model.layers.6.block_sparse_moe.gate.weight": "model-00002-of-00009.safetensors",
|
| 702 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 703 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 704 |
+
"model.layers.6.post_feedforward_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 705 |
+
"model.layers.6.pre_feedforward_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 706 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
|
| 707 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
|
| 708 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
|
| 709 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
|
| 710 |
+
"model.layers.7.block_sparse_moe.experts.0.down_proj.weight": "model-00002-of-00009.safetensors",
|
| 711 |
+
"model.layers.7.block_sparse_moe.experts.0.gate_proj.weight": "model-00002-of-00009.safetensors",
|
| 712 |
+
"model.layers.7.block_sparse_moe.experts.0.up_proj.weight": "model-00002-of-00009.safetensors",
|
| 713 |
+
"model.layers.7.block_sparse_moe.experts.1.down_proj.weight": "model-00002-of-00009.safetensors",
|
| 714 |
+
"model.layers.7.block_sparse_moe.experts.1.gate_proj.weight": "model-00002-of-00009.safetensors",
|
| 715 |
+
"model.layers.7.block_sparse_moe.experts.1.up_proj.weight": "model-00002-of-00009.safetensors",
|
| 716 |
+
"model.layers.7.block_sparse_moe.experts.2.down_proj.weight": "model-00002-of-00009.safetensors",
|
| 717 |
+
"model.layers.7.block_sparse_moe.experts.2.gate_proj.weight": "model-00002-of-00009.safetensors",
|
| 718 |
+
"model.layers.7.block_sparse_moe.experts.2.up_proj.weight": "model-00002-of-00009.safetensors",
|
| 719 |
+
"model.layers.7.block_sparse_moe.gate.weight": "model-00002-of-00009.safetensors",
|
| 720 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 721 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 722 |
+
"model.layers.7.post_feedforward_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 723 |
+
"model.layers.7.pre_feedforward_layernorm.weight": "model-00002-of-00009.safetensors",
|
| 724 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
|
| 725 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
|
| 726 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
|
| 727 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
|
| 728 |
+
"model.layers.8.block_sparse_moe.experts.0.down_proj.weight": "model-00003-of-00009.safetensors",
|
| 729 |
+
"model.layers.8.block_sparse_moe.experts.0.gate_proj.weight": "model-00003-of-00009.safetensors",
|
| 730 |
+
"model.layers.8.block_sparse_moe.experts.0.up_proj.weight": "model-00003-of-00009.safetensors",
|
| 731 |
+
"model.layers.8.block_sparse_moe.experts.1.down_proj.weight": "model-00003-of-00009.safetensors",
|
| 732 |
+
"model.layers.8.block_sparse_moe.experts.1.gate_proj.weight": "model-00003-of-00009.safetensors",
|
| 733 |
+
"model.layers.8.block_sparse_moe.experts.1.up_proj.weight": "model-00003-of-00009.safetensors",
|
| 734 |
+
"model.layers.8.block_sparse_moe.experts.2.down_proj.weight": "model-00003-of-00009.safetensors",
|
| 735 |
+
"model.layers.8.block_sparse_moe.experts.2.gate_proj.weight": "model-00003-of-00009.safetensors",
|
| 736 |
+
"model.layers.8.block_sparse_moe.experts.2.up_proj.weight": "model-00003-of-00009.safetensors",
|
| 737 |
+
"model.layers.8.block_sparse_moe.gate.weight": "model-00003-of-00009.safetensors",
|
| 738 |
+
"model.layers.8.input_layernorm.weight": "model-00003-of-00009.safetensors",
|
| 739 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
|
| 740 |
+
"model.layers.8.post_feedforward_layernorm.weight": "model-00003-of-00009.safetensors",
|
| 741 |
+
"model.layers.8.pre_feedforward_layernorm.weight": "model-00003-of-00009.safetensors",
|
| 742 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
|
| 743 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
|
| 744 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
|
| 745 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
|
| 746 |
+
"model.layers.9.block_sparse_moe.experts.0.down_proj.weight": "model-00003-of-00009.safetensors",
|
| 747 |
+
"model.layers.9.block_sparse_moe.experts.0.gate_proj.weight": "model-00003-of-00009.safetensors",
|
| 748 |
+
"model.layers.9.block_sparse_moe.experts.0.up_proj.weight": "model-00003-of-00009.safetensors",
|
| 749 |
+
"model.layers.9.block_sparse_moe.experts.1.down_proj.weight": "model-00003-of-00009.safetensors",
|
| 750 |
+
"model.layers.9.block_sparse_moe.experts.1.gate_proj.weight": "model-00003-of-00009.safetensors",
|
| 751 |
+
"model.layers.9.block_sparse_moe.experts.1.up_proj.weight": "model-00003-of-00009.safetensors",
|
| 752 |
+
"model.layers.9.block_sparse_moe.experts.2.down_proj.weight": "model-00003-of-00009.safetensors",
|
| 753 |
+
"model.layers.9.block_sparse_moe.experts.2.gate_proj.weight": "model-00003-of-00009.safetensors",
|
| 754 |
+
"model.layers.9.block_sparse_moe.experts.2.up_proj.weight": "model-00003-of-00009.safetensors",
|
| 755 |
+
"model.layers.9.block_sparse_moe.gate.weight": "model-00003-of-00009.safetensors",
|
| 756 |
+
"model.layers.9.input_layernorm.weight": "model-00003-of-00009.safetensors",
|
| 757 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
|
| 758 |
+
"model.layers.9.post_feedforward_layernorm.weight": "model-00003-of-00009.safetensors",
|
| 759 |
+
"model.layers.9.pre_feedforward_layernorm.weight": "model-00003-of-00009.safetensors",
|
| 760 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
|
| 761 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
|
| 762 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
|
| 763 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
|
| 764 |
+
"model.norm.weight": "model-00009-of-00009.safetensors"
|
| 765 |
+
}
|
| 766 |
+
}
|
modeling_gemma2moe.py
ADDED
|
@@ -0,0 +1,753 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The HuggingFace Inc. team and Gemma2MoE Contributors.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" PyTorch Gemma2MoE model."""
|
| 16 |
+
|
| 17 |
+
import math
|
| 18 |
+
from typing import List, Optional, Tuple, Union
|
| 19 |
+
|
| 20 |
+
import torch
|
| 21 |
+
import torch.nn.functional as F
|
| 22 |
+
import torch.utils.checkpoint
|
| 23 |
+
from torch import nn
|
| 24 |
+
from torch.nn import CrossEntropyLoss
|
| 25 |
+
|
| 26 |
+
from transformers.activations import ACT2FN
|
| 27 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
| 28 |
+
from transformers.modeling_outputs import MoeModelOutputWithPast, MoeCausalLMOutputWithPast
|
| 29 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 30 |
+
from transformers.generation import GenerationMixin
|
| 31 |
+
from transformers.utils import (
|
| 32 |
+
add_start_docstrings,
|
| 33 |
+
add_start_docstrings_to_model_forward,
|
| 34 |
+
logging,
|
| 35 |
+
replace_return_docstrings,
|
| 36 |
+
)
|
| 37 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
| 38 |
+
|
| 39 |
+
from .configuration_gemma2moe import Gemma2MoeConfig
|
| 40 |
+
|
| 41 |
+
logger = logging.get_logger(__name__)
|
| 42 |
+
|
| 43 |
+
_CONFIG_FOR_DOC = "Gemma2MoeConfig"
|
| 44 |
+
|
| 45 |
+
# --- Auxiliary Loss & Router Functions ---
|
| 46 |
+
|
| 47 |
+
def load_balancing_loss_func(gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2) -> float:
|
| 48 |
+
r"""
|
| 49 |
+
Computes auxiliary load balancing loss as in Switch Transformer.
|
| 50 |
+
"""
|
| 51 |
+
if gate_logits is None or not isinstance(gate_logits, torch.Tensor):
|
| 52 |
+
return 0.0
|
| 53 |
+
|
| 54 |
+
# gate_logits: [batch_size * seq_len, num_experts] assumed flattened or [batch, seq, experts]
|
| 55 |
+
if gate_logits.dim() == 3:
|
| 56 |
+
gate_logits = gate_logits.view(-1, gate_logits.shape[-1])
|
| 57 |
+
|
| 58 |
+
routing_weights = torch.softmax(gate_logits, dim=-1)
|
| 59 |
+
|
| 60 |
+
# top_k indices
|
| 61 |
+
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
| 62 |
+
|
| 63 |
+
# expert_mask: [num_tokens, num_experts]
|
| 64 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
|
| 65 |
+
if expert_mask.dim() == 3:
|
| 66 |
+
expert_mask = expert_mask.sum(dim=1) # Sum over k selected experts
|
| 67 |
+
|
| 68 |
+
# Normalize to get fraction of tokens per expert
|
| 69 |
+
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
|
| 70 |
+
|
| 71 |
+
# Mean probability per expert
|
| 72 |
+
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
| 73 |
+
|
| 74 |
+
# Loss = N * sum(f_i * P_i)
|
| 75 |
+
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert) * num_experts
|
| 76 |
+
return overall_loss
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
# --- Gemma 2 Components ---
|
| 80 |
+
|
| 81 |
+
class Gemma2RMSNorm(nn.Module):
|
| 82 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
| 83 |
+
super().__init__()
|
| 84 |
+
self.eps = eps
|
| 85 |
+
self.weight = nn.Parameter(torch.zeros(dim))
|
| 86 |
+
|
| 87 |
+
def _norm(self, x):
|
| 88 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
| 89 |
+
|
| 90 |
+
def forward(self, x):
|
| 91 |
+
output = self._norm(x.float())
|
| 92 |
+
# Gemma 2 signature: output * (1 + weight)
|
| 93 |
+
# Casting back to input dtype
|
| 94 |
+
output = output * (1.0 + self.weight.float())
|
| 95 |
+
return output.type_as(x)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class Gemma2RotaryEmbedding(nn.Module):
|
| 99 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 100 |
+
super().__init__()
|
| 101 |
+
self.dim = dim
|
| 102 |
+
self.max_position_embeddings = max_position_embeddings
|
| 103 |
+
self.base = base
|
| 104 |
+
self.register_buffer("inv_freq", None, persistent=False)
|
| 105 |
+
|
| 106 |
+
@torch.no_grad()
|
| 107 |
+
def forward(self, x, position_ids, seq_len=None):
|
| 108 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 109 |
+
if self.inv_freq is None:
|
| 110 |
+
self.inv_freq = 1.0 / (
|
| 111 |
+
self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
|
| 112 |
+
)
|
| 113 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 114 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 115 |
+
|
| 116 |
+
# Use float32 for RoPE calculation to maintain precision
|
| 117 |
+
with torch.autocast(device_type=x.device.type, enabled=False):
|
| 118 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 119 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 120 |
+
cos = emb.cos()
|
| 121 |
+
sin = emb.sin()
|
| 122 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def rotate_half(x):
|
| 126 |
+
"""Rotates half the hidden dims of the input."""
|
| 127 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 128 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 129 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def apply_rotary_pos_emb(q, k, cos, sin):
|
| 133 |
+
"""Applies Rotary Position Embedding to the query and key tensors."""
|
| 134 |
+
cos = cos.unsqueeze(1) # [bs, 1, seq_len, head_dim]
|
| 135 |
+
sin = sin.unsqueeze(1)
|
| 136 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 137 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 138 |
+
return q_embed, k_embed
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 142 |
+
"""
|
| 143 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
|
| 144 |
+
Used for Grouped Query Attention (GQA).
|
| 145 |
+
"""
|
| 146 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 147 |
+
if n_rep == 1:
|
| 148 |
+
return hidden_states
|
| 149 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 150 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
class Gemma2Attention(nn.Module):
|
| 154 |
+
"""
|
| 155 |
+
Multi-headed attention with Soft-capping, Sliding Window and GQA.
|
| 156 |
+
"""
|
| 157 |
+
def __init__(self, config: Gemma2MoeConfig, layer_idx: Optional[int] = None):
|
| 158 |
+
super().__init__()
|
| 159 |
+
self.config = config
|
| 160 |
+
self.layer_idx = layer_idx
|
| 161 |
+
|
| 162 |
+
self.attention_dropout = config.attention_dropout
|
| 163 |
+
self.hidden_size = config.hidden_size
|
| 164 |
+
self.num_heads = config.num_attention_heads
|
| 165 |
+
self.head_dim = config.head_dim
|
| 166 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 167 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 168 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 169 |
+
self.rope_theta = config.rope_theta
|
| 170 |
+
self.is_causal = True
|
| 171 |
+
|
| 172 |
+
# Gemma 2 scaling specific
|
| 173 |
+
self.scaling = config.query_pre_attn_scalar ** -0.5
|
| 174 |
+
|
| 175 |
+
# Soft capping parameter
|
| 176 |
+
self.attn_logit_soft_capping = config.attn_logit_soft_capping
|
| 177 |
+
|
| 178 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
| 179 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
| 180 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
| 181 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
|
| 182 |
+
|
| 183 |
+
self.rotary_emb = Gemma2RotaryEmbedding(
|
| 184 |
+
self.head_dim,
|
| 185 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 186 |
+
base=self.rope_theta,
|
| 187 |
+
)
|
| 188 |
+
self.sliding_window = config.sliding_window
|
| 189 |
+
|
| 190 |
+
def forward(
|
| 191 |
+
self,
|
| 192 |
+
hidden_states: torch.Tensor,
|
| 193 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 194 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 195 |
+
past_key_value: Optional[Cache] = None,
|
| 196 |
+
output_attentions: bool = False,
|
| 197 |
+
use_cache: bool = False,
|
| 198 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 199 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 200 |
+
bsz, q_len, _ = hidden_states.size()
|
| 201 |
+
|
| 202 |
+
query_states = self.q_proj(hidden_states)
|
| 203 |
+
key_states = self.k_proj(hidden_states)
|
| 204 |
+
value_states = self.v_proj(hidden_states)
|
| 205 |
+
|
| 206 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 207 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 208 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 209 |
+
|
| 210 |
+
cos, sin = self.rotary_emb(value_states, position_ids=position_ids, seq_len=None)
|
| 211 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 212 |
+
|
| 213 |
+
if past_key_value is not None:
|
| 214 |
+
# cache_position for static cache, legacy for dynamic
|
| 215 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position, "sliding_window": self.sliding_window}
|
| 216 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 217 |
+
|
| 218 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 219 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 220 |
+
|
| 221 |
+
# Scaled Dot Product Calculation
|
| 222 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling
|
| 223 |
+
|
| 224 |
+
# Logit Soft Capping
|
| 225 |
+
if self.attn_logit_soft_capping is not None:
|
| 226 |
+
attn_weights = attn_weights / self.attn_logit_soft_capping
|
| 227 |
+
attn_weights = torch.tanh(attn_weights)
|
| 228 |
+
attn_weights = attn_weights * self.attn_logit_soft_capping
|
| 229 |
+
|
| 230 |
+
if attention_mask is not None:
|
| 231 |
+
# Mask should be broadcastable
|
| 232 |
+
attn_weights = attn_weights + attention_mask
|
| 233 |
+
|
| 234 |
+
# Softmax and Dropout
|
| 235 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 236 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
| 237 |
+
|
| 238 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 239 |
+
|
| 240 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 241 |
+
raise ValueError(
|
| 242 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 243 |
+
f" {attn_output.size()}"
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 247 |
+
attn_output = attn_output.view(bsz, q_len, -1)
|
| 248 |
+
attn_output = self.o_proj(attn_output)
|
| 249 |
+
|
| 250 |
+
if not output_attentions:
|
| 251 |
+
attn_weights = None
|
| 252 |
+
|
| 253 |
+
return attn_output, attn_weights, past_key_value
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
# --- Expert & MoE Block ---
|
| 257 |
+
|
| 258 |
+
class Gemma2MLP(nn.Module):
|
| 259 |
+
"""
|
| 260 |
+
Gemma 2 MLP: Gated GELU Tanh
|
| 261 |
+
"""
|
| 262 |
+
def __init__(self, config):
|
| 263 |
+
super().__init__()
|
| 264 |
+
self.config = config
|
| 265 |
+
self.hidden_size = config.hidden_size
|
| 266 |
+
self.intermediate_size = config.intermediate_size
|
| 267 |
+
|
| 268 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 269 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 270 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 271 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 272 |
+
|
| 273 |
+
def forward(self, x):
|
| 274 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
class Gemma2MoeBlock(nn.Module):
|
| 278 |
+
"""
|
| 279 |
+
Sparse MoE Block for Gemma 2.
|
| 280 |
+
Uses Top-k gating and processes selected tokens through experts.
|
| 281 |
+
"""
|
| 282 |
+
def __init__(self, config: Gemma2MoeConfig):
|
| 283 |
+
super().__init__()
|
| 284 |
+
self.hidden_dim = config.hidden_size
|
| 285 |
+
self.num_experts = config.num_local_experts
|
| 286 |
+
self.top_k = config.num_experts_per_tok
|
| 287 |
+
self.jitter_noise = config.router_jitter_noise
|
| 288 |
+
|
| 289 |
+
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
|
| 290 |
+
self.experts = nn.ModuleList([Gemma2MLP(config) for _ in range(self.num_experts)])
|
| 291 |
+
|
| 292 |
+
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 293 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
| 294 |
+
hidden_states_flat = hidden_states.view(-1, hidden_dim)
|
| 295 |
+
|
| 296 |
+
# Router Logits
|
| 297 |
+
router_logits = self.gate(hidden_states_flat)
|
| 298 |
+
|
| 299 |
+
if self.training and self.jitter_noise > 0:
|
| 300 |
+
router_logits += torch.empty_like(router_logits).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
|
| 301 |
+
|
| 302 |
+
routing_weights = F.softmax(router_logits, dim=1)
|
| 303 |
+
topk_weight, topk_idx = torch.topk(routing_weights, self.top_k, dim=-1, sorted=False)
|
| 304 |
+
|
| 305 |
+
# Normalize weights
|
| 306 |
+
topk_weight /= topk_weight.sum(dim=-1, keepdim=True)
|
| 307 |
+
topk_weight = topk_weight.to(hidden_states.dtype)
|
| 308 |
+
|
| 309 |
+
# Routing process
|
| 310 |
+
# Using a loop here for clarity and simplicity in Python.
|
| 311 |
+
# For extreme performance, Triton or CUDA kernels should be used.
|
| 312 |
+
final_hidden_states = torch.zeros_like(hidden_states_flat)
|
| 313 |
+
|
| 314 |
+
# Flatten indices to handle batching easier
|
| 315 |
+
flat_topk_idx = topk_idx.view(-1)
|
| 316 |
+
|
| 317 |
+
# We need to process each expert
|
| 318 |
+
for i, expert in enumerate(self.experts):
|
| 319 |
+
# Find tokens assigned to this expert (in any of the top-k slots)
|
| 320 |
+
# This is a bit inefficient in pure PyTorch but ensures correctness without custom kernels
|
| 321 |
+
# Create a mask for tokens where this expert is selected
|
| 322 |
+
expert_mask = (topk_idx == i)
|
| 323 |
+
|
| 324 |
+
if expert_mask.any():
|
| 325 |
+
# We need to collect inputs, process, and scatter back
|
| 326 |
+
# This logic handles cases where an expert is selected multiple times (unlikely in top-k but possible conceptually)
|
| 327 |
+
# But typically top-k implies distinct experts.
|
| 328 |
+
|
| 329 |
+
# Get indices where this expert is used
|
| 330 |
+
batch_indices, k_indices = torch.where(expert_mask)
|
| 331 |
+
|
| 332 |
+
# Extract inputs
|
| 333 |
+
inp = hidden_states_flat[batch_indices]
|
| 334 |
+
|
| 335 |
+
# Forward pass
|
| 336 |
+
out = expert(inp)
|
| 337 |
+
|
| 338 |
+
# Weighting: We need the weight associated with this selection
|
| 339 |
+
weights = topk_weight[batch_indices, k_indices]
|
| 340 |
+
|
| 341 |
+
# Accumulate result
|
| 342 |
+
# Ideally, scatter_add, but here we iterate.
|
| 343 |
+
# Since batch_indices might repeat if we allowed k repetitions (we don't usually),
|
| 344 |
+
# standard scatter_add_ is safer.
|
| 345 |
+
|
| 346 |
+
weighted_out = out * weights.unsqueeze(-1)
|
| 347 |
+
final_hidden_states.index_add_(0, batch_indices, weighted_out)
|
| 348 |
+
|
| 349 |
+
final_hidden_states = final_hidden_states.view(batch_size, sequence_length, hidden_dim)
|
| 350 |
+
return final_hidden_states, router_logits
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
# --- Decoder Layer (Strict Gemma 2 Topology) ---
|
| 354 |
+
|
| 355 |
+
class Gemma2MoeDecoderLayer(nn.Module):
|
| 356 |
+
def __init__(self, config: Gemma2MoeConfig, layer_idx: int):
|
| 357 |
+
super().__init__()
|
| 358 |
+
self.hidden_size = config.hidden_size
|
| 359 |
+
|
| 360 |
+
self.self_attn = Gemma2Attention(config, layer_idx)
|
| 361 |
+
self.block_sparse_moe = Gemma2MoeBlock(config)
|
| 362 |
+
|
| 363 |
+
# Gemma 2 uses 4 specific RMSNorms per layer
|
| 364 |
+
self.input_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 365 |
+
self.post_attention_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 366 |
+
self.pre_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 367 |
+
self.post_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 368 |
+
|
| 369 |
+
def forward(
|
| 370 |
+
self,
|
| 371 |
+
hidden_states: torch.Tensor,
|
| 372 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 373 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 374 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 375 |
+
output_attentions: Optional[bool] = False,
|
| 376 |
+
output_router_logits: Optional[bool] = False,
|
| 377 |
+
use_cache: Optional[bool] = False,
|
| 378 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 379 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 380 |
+
|
| 381 |
+
# --- Attention Path ---
|
| 382 |
+
residual = hidden_states
|
| 383 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 384 |
+
|
| 385 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 386 |
+
hidden_states=hidden_states,
|
| 387 |
+
attention_mask=attention_mask,
|
| 388 |
+
position_ids=position_ids,
|
| 389 |
+
past_key_value=past_key_value,
|
| 390 |
+
output_attentions=output_attentions,
|
| 391 |
+
use_cache=use_cache,
|
| 392 |
+
cache_position=cache_position,
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 396 |
+
hidden_states = residual + hidden_states # Residual Connection
|
| 397 |
+
|
| 398 |
+
# --- MoE Path ---
|
| 399 |
+
residual = hidden_states
|
| 400 |
+
hidden_states = self.pre_feedforward_layernorm(hidden_states)
|
| 401 |
+
|
| 402 |
+
# Using MoE instead of standard MLP
|
| 403 |
+
hidden_states, router_logits = self.block_sparse_moe(hidden_states)
|
| 404 |
+
|
| 405 |
+
hidden_states = self.post_feedforward_layernorm(hidden_states)
|
| 406 |
+
hidden_states = residual + hidden_states # Residual Connection
|
| 407 |
+
|
| 408 |
+
outputs = (hidden_states,)
|
| 409 |
+
|
| 410 |
+
if output_attentions:
|
| 411 |
+
outputs += (self_attn_weights,)
|
| 412 |
+
|
| 413 |
+
if use_cache:
|
| 414 |
+
outputs += (present_key_value,)
|
| 415 |
+
|
| 416 |
+
if output_router_logits:
|
| 417 |
+
outputs += (router_logits,)
|
| 418 |
+
|
| 419 |
+
return outputs
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
# --- PreTrained Model Wrappers ---
|
| 423 |
+
|
| 424 |
+
class Gemma2MoePreTrainedModel(PreTrainedModel):
|
| 425 |
+
config_class = Gemma2MoeConfig
|
| 426 |
+
base_model_prefix = "model"
|
| 427 |
+
supports_gradient_checkpointing = True
|
| 428 |
+
_no_split_modules = ["Gemma2MoeDecoderLayer"]
|
| 429 |
+
_skip_keys_device_placement = ["past_key_values"]
|
| 430 |
+
_supports_flash_attn_2 = False # Keeping SDPA for broad compatibility logic implemented above
|
| 431 |
+
_supports_sdpa = True
|
| 432 |
+
_supports_cache_class = True
|
| 433 |
+
|
| 434 |
+
def _init_weights(self, module):
|
| 435 |
+
std = self.config.initializer_range
|
| 436 |
+
if isinstance(module, nn.Linear):
|
| 437 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 438 |
+
if module.bias is not None:
|
| 439 |
+
module.bias.data.zero_()
|
| 440 |
+
elif isinstance(module, nn.Embedding):
|
| 441 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 442 |
+
if module.padding_idx is not None:
|
| 443 |
+
module.weight.data[module.padding_idx].zero_()
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
class Gemma2MoeModel(Gemma2MoePreTrainedModel):
|
| 447 |
+
def __init__(self, config: Gemma2MoeConfig):
|
| 448 |
+
super().__init__(config)
|
| 449 |
+
self.padding_idx = config.pad_token_id
|
| 450 |
+
self.vocab_size = config.vocab_size
|
| 451 |
+
|
| 452 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 453 |
+
self.layers = nn.ModuleList(
|
| 454 |
+
[Gemma2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 455 |
+
)
|
| 456 |
+
self.norm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 457 |
+
self.gradient_checkpointing = False
|
| 458 |
+
|
| 459 |
+
# Initialize weights and apply final processing
|
| 460 |
+
self.post_init()
|
| 461 |
+
|
| 462 |
+
def get_input_embeddings(self):
|
| 463 |
+
return self.embed_tokens
|
| 464 |
+
|
| 465 |
+
def set_input_embeddings(self, value):
|
| 466 |
+
self.embed_tokens = value
|
| 467 |
+
|
| 468 |
+
def forward(
|
| 469 |
+
self,
|
| 470 |
+
input_ids: torch.LongTensor = None,
|
| 471 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 472 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 473 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 474 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 475 |
+
use_cache: Optional[bool] = None,
|
| 476 |
+
output_attentions: Optional[bool] = None,
|
| 477 |
+
output_hidden_states: Optional[bool] = None,
|
| 478 |
+
output_router_logits: Optional[bool] = None,
|
| 479 |
+
return_dict: Optional[bool] = None,
|
| 480 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 481 |
+
) -> Union[Tuple, MoeModelOutputWithPast]:
|
| 482 |
+
|
| 483 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 484 |
+
output_router_logits = output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
| 485 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 486 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 487 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 488 |
+
|
| 489 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 490 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 491 |
+
|
| 492 |
+
if inputs_embeds is None:
|
| 493 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 494 |
+
|
| 495 |
+
if use_cache and past_key_values is None:
|
| 496 |
+
past_key_values = DynamicCache()
|
| 497 |
+
|
| 498 |
+
if cache_position is None:
|
| 499 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 500 |
+
cache_position = torch.arange(
|
| 501 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 502 |
+
)
|
| 503 |
+
|
| 504 |
+
if position_ids is None:
|
| 505 |
+
position_ids = cache_position.unsqueeze(0)
|
| 506 |
+
|
| 507 |
+
# 4D Attention Mask Creation (handles Sliding Window if config requests it)
|
| 508 |
+
causal_mask = _prepare_4d_causal_attention_mask(
|
| 509 |
+
attention_mask,
|
| 510 |
+
(inputs_embeds.shape[0], inputs_embeds.shape[1]),
|
| 511 |
+
inputs_embeds,
|
| 512 |
+
past_key_values.get_seq_length() if past_key_values is not None else 0,
|
| 513 |
+
sliding_window=self.config.sliding_window,
|
| 514 |
+
)
|
| 515 |
+
|
| 516 |
+
# Normalization (Gemma 2 embedding scaling)
|
| 517 |
+
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=inputs_embeds.dtype)
|
| 518 |
+
hidden_states = inputs_embeds * normalizer
|
| 519 |
+
|
| 520 |
+
all_hidden_states = () if output_hidden_states else None
|
| 521 |
+
all_router_logits = () if output_router_logits else None
|
| 522 |
+
|
| 523 |
+
for decoder_layer in self.layers:
|
| 524 |
+
if output_hidden_states:
|
| 525 |
+
all_hidden_states += (hidden_states,)
|
| 526 |
+
|
| 527 |
+
if self.gradient_checkpointing and self.training:
|
| 528 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 529 |
+
decoder_layer.__call__,
|
| 530 |
+
hidden_states,
|
| 531 |
+
causal_mask,
|
| 532 |
+
position_ids,
|
| 533 |
+
past_key_values,
|
| 534 |
+
output_attentions,
|
| 535 |
+
output_router_logits,
|
| 536 |
+
use_cache,
|
| 537 |
+
cache_position,
|
| 538 |
+
)
|
| 539 |
+
else:
|
| 540 |
+
layer_outputs = decoder_layer(
|
| 541 |
+
hidden_states,
|
| 542 |
+
attention_mask=causal_mask,
|
| 543 |
+
position_ids=position_ids,
|
| 544 |
+
past_key_value=past_key_values,
|
| 545 |
+
output_attentions=output_attentions,
|
| 546 |
+
output_router_logits=output_router_logits,
|
| 547 |
+
use_cache=use_cache,
|
| 548 |
+
cache_position=cache_position,
|
| 549 |
+
)
|
| 550 |
+
|
| 551 |
+
hidden_states = layer_outputs[0]
|
| 552 |
+
|
| 553 |
+
if output_router_logits:
|
| 554 |
+
all_router_logits += (layer_outputs[-1],)
|
| 555 |
+
|
| 556 |
+
hidden_states = self.norm(hidden_states)
|
| 557 |
+
|
| 558 |
+
if output_hidden_states:
|
| 559 |
+
all_hidden_states += (hidden_states,)
|
| 560 |
+
|
| 561 |
+
if not return_dict:
|
| 562 |
+
return tuple(v for v in [hidden_states, past_key_values, all_hidden_states, all_router_logits] if v is not None)
|
| 563 |
+
|
| 564 |
+
return MoeModelOutputWithPast(
|
| 565 |
+
last_hidden_state=hidden_states,
|
| 566 |
+
past_key_values=past_key_values,
|
| 567 |
+
hidden_states=all_hidden_states,
|
| 568 |
+
router_logits=all_router_logits,
|
| 569 |
+
)
|
| 570 |
+
|
| 571 |
+
|
| 572 |
+
class Gemma2MoeForCausalLM(Gemma2MoePreTrainedModel, GenerationMixin):
|
| 573 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 574 |
+
|
| 575 |
+
def __init__(self, config):
|
| 576 |
+
super().__init__(config)
|
| 577 |
+
self.model = Gemma2MoeModel(config)
|
| 578 |
+
self.vocab_size = config.vocab_size
|
| 579 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 580 |
+
self.router_aux_loss_coef = config.router_aux_loss_coef
|
| 581 |
+
self.num_experts = config.num_local_experts
|
| 582 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
| 583 |
+
|
| 584 |
+
# Initialize weights and apply final processing
|
| 585 |
+
self.post_init()
|
| 586 |
+
|
| 587 |
+
def get_input_embeddings(self):
|
| 588 |
+
return self.model.embed_tokens
|
| 589 |
+
|
| 590 |
+
def set_input_embeddings(self, value):
|
| 591 |
+
self.model.embed_tokens = value
|
| 592 |
+
|
| 593 |
+
def get_output_embeddings(self):
|
| 594 |
+
return self.lm_head
|
| 595 |
+
|
| 596 |
+
def set_output_embeddings(self, new_embeddings):
|
| 597 |
+
self.lm_head = new_embeddings
|
| 598 |
+
|
| 599 |
+
def forward(
|
| 600 |
+
self,
|
| 601 |
+
input_ids: torch.LongTensor = None,
|
| 602 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 603 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 604 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 605 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 606 |
+
labels: Optional[torch.LongTensor] = None,
|
| 607 |
+
use_cache: Optional[bool] = None,
|
| 608 |
+
output_attentions: Optional[bool] = None,
|
| 609 |
+
output_hidden_states: Optional[bool] = None,
|
| 610 |
+
output_router_logits: Optional[bool] = None,
|
| 611 |
+
return_dict: Optional[bool] = None,
|
| 612 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 613 |
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
| 614 |
+
|
| 615 |
+
output_router_logits = output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
| 616 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 617 |
+
|
| 618 |
+
outputs = self.model(
|
| 619 |
+
input_ids=input_ids,
|
| 620 |
+
attention_mask=attention_mask,
|
| 621 |
+
position_ids=position_ids,
|
| 622 |
+
past_key_values=past_key_values,
|
| 623 |
+
inputs_embeds=inputs_embeds,
|
| 624 |
+
use_cache=use_cache,
|
| 625 |
+
output_attentions=output_attentions,
|
| 626 |
+
output_hidden_states=output_hidden_states,
|
| 627 |
+
output_router_logits=output_router_logits,
|
| 628 |
+
return_dict=return_dict,
|
| 629 |
+
cache_position=cache_position,
|
| 630 |
+
)
|
| 631 |
+
|
| 632 |
+
hidden_states = outputs[0]
|
| 633 |
+
logits = self.lm_head(hidden_states)
|
| 634 |
+
|
| 635 |
+
# Final Soft Capping (Gemma 2 Specific feature)
|
| 636 |
+
# tanh(logits / cap) * cap
|
| 637 |
+
if self.config.logit_soft_capping is not None:
|
| 638 |
+
logits = logits / self.config.logit_soft_capping
|
| 639 |
+
logits = torch.tanh(logits)
|
| 640 |
+
logits = logits * self.config.logit_soft_capping
|
| 641 |
+
|
| 642 |
+
logits = logits.float()
|
| 643 |
+
|
| 644 |
+
loss = None
|
| 645 |
+
if labels is not None:
|
| 646 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 647 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 648 |
+
loss_fct = CrossEntropyLoss()
|
| 649 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 650 |
+
shift_labels = shift_labels.view(-1)
|
| 651 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 652 |
+
|
| 653 |
+
aux_loss = None
|
| 654 |
+
if output_router_logits:
|
| 655 |
+
aux_loss = load_balancing_loss_func(
|
| 656 |
+
outputs.router_logits if return_dict else outputs[-1],
|
| 657 |
+
self.num_experts,
|
| 658 |
+
self.num_experts_per_tok,
|
| 659 |
+
)
|
| 660 |
+
if labels is not None:
|
| 661 |
+
loss += self.router_aux_loss_coef * aux_loss
|
| 662 |
+
|
| 663 |
+
if not return_dict:
|
| 664 |
+
output = (logits,) + outputs[1:]
|
| 665 |
+
if output_router_logits:
|
| 666 |
+
output = (aux_loss,) + output
|
| 667 |
+
return (loss,) + output if loss is not None else output
|
| 668 |
+
|
| 669 |
+
return MoeCausalLMOutputWithPast(
|
| 670 |
+
loss=loss,
|
| 671 |
+
aux_loss=aux_loss,
|
| 672 |
+
logits=logits,
|
| 673 |
+
past_key_values=outputs.past_key_values,
|
| 674 |
+
hidden_states=outputs.hidden_states,
|
| 675 |
+
attentions=outputs.attentions,
|
| 676 |
+
router_logits=outputs.router_logits,
|
| 677 |
+
)
|
| 678 |
+
|
| 679 |
+
def prepare_inputs_for_generation(
|
| 680 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
|
| 681 |
+
):
|
| 682 |
+
past_length = 0
|
| 683 |
+
if past_key_values is not None:
|
| 684 |
+
if isinstance(past_key_values, Cache):
|
| 685 |
+
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
|
| 686 |
+
|
| 687 |
+
# --- HATA DÜZELTMESİ BAŞLANGICI ---
|
| 688 |
+
# get_max_length metodunun varlığını kontrol ediyoruz
|
| 689 |
+
if hasattr(past_key_values, "get_max_length") and past_key_values.get_max_length() is not None:
|
| 690 |
+
max_cache_length = torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
|
| 691 |
+
else:
|
| 692 |
+
max_cache_length = None
|
| 693 |
+
# --- HATA DÜZELTMESİ BİTİŞİ ---
|
| 694 |
+
|
| 695 |
+
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
|
| 696 |
+
|
| 697 |
+
# Legacy Cache (Tuple formatı için)
|
| 698 |
+
else:
|
| 699 |
+
past_length = past_key_values[0][0].shape[2]
|
| 700 |
+
max_cache_length = None
|
| 701 |
+
|
| 702 |
+
# Keep only the unprocessed tokens:
|
| 703 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
| 704 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
| 705 |
+
elif past_length < input_ids.shape[1]:
|
| 706 |
+
input_ids = input_ids[:, past_length:]
|
| 707 |
+
|
| 708 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
| 709 |
+
if (
|
| 710 |
+
max_cache_length is not None
|
| 711 |
+
and attention_mask is not None
|
| 712 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
| 713 |
+
):
|
| 714 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
| 715 |
+
|
| 716 |
+
position_ids = kwargs.get("position_ids", None)
|
| 717 |
+
if attention_mask is not None and position_ids is None:
|
| 718 |
+
# create position_ids on the fly for batch generation
|
| 719 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 720 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 721 |
+
if past_key_values:
|
| 722 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
| 723 |
+
|
| 724 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 725 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 726 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 727 |
+
else:
|
| 728 |
+
model_inputs = {"input_ids": input_ids}
|
| 729 |
+
|
| 730 |
+
if cache_position is None:
|
| 731 |
+
# Inputs embeds veya input_ids hangisi varsa onun shape'ini al
|
| 732 |
+
input_len = model_inputs.get("input_ids", inputs_embeds).shape[1]
|
| 733 |
+
cache_position = torch.arange(past_length, past_length + input_len, device=input_ids.device)
|
| 734 |
+
|
| 735 |
+
model_inputs.update(
|
| 736 |
+
{
|
| 737 |
+
"position_ids": position_ids,
|
| 738 |
+
"cache_position": cache_position,
|
| 739 |
+
"past_key_values": past_key_values,
|
| 740 |
+
"use_cache": kwargs.get("use_cache"),
|
| 741 |
+
"attention_mask": attention_mask,
|
| 742 |
+
}
|
| 743 |
+
)
|
| 744 |
+
return model_inputs
|
| 745 |
+
|
| 746 |
+
@staticmethod
|
| 747 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 748 |
+
reordered_past = ()
|
| 749 |
+
for layer_past in past_key_values:
|
| 750 |
+
reordered_past += (
|
| 751 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
| 752 |
+
)
|
| 753 |
+
return reordered_past
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<start_of_turn>",
|
| 4 |
+
"<end_of_turn>"
|
| 5 |
+
],
|
| 6 |
+
"bos_token": {
|
| 7 |
+
"content": "<bos>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false
|
| 12 |
+
},
|
| 13 |
+
"eos_token": {
|
| 14 |
+
"content": "<end_of_turn>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false
|
| 19 |
+
},
|
| 20 |
+
"pad_token": {
|
| 21 |
+
"content": "<pad>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false
|
| 26 |
+
},
|
| 27 |
+
"unk_token": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false
|
| 33 |
+
}
|
| 34 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8a9dead7ec8422d57df8e480a53b45ea76e22cf7afc3d4b64587f8ea48aacbc8
|
| 3 |
+
size 34363130
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,2015 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"0": {
|
| 6 |
+
"content": "<pad>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"1": {
|
| 14 |
+
"content": "<eos>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"2": {
|
| 22 |
+
"content": "<bos>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"3": {
|
| 30 |
+
"content": "<unk>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"4": {
|
| 38 |
+
"content": "<mask>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": false
|
| 44 |
+
},
|
| 45 |
+
"5": {
|
| 46 |
+
"content": "<2mass>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": false
|
| 52 |
+
},
|
| 53 |
+
"6": {
|
| 54 |
+
"content": "[@BOS@]",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": false
|
| 60 |
+
},
|
| 61 |
+
"7": {
|
| 62 |
+
"content": "<think>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": false
|
| 68 |
+
},
|
| 69 |
+
"8": {
|
| 70 |
+
"content": "</think>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": false
|
| 76 |
+
},
|
| 77 |
+
"9": {
|
| 78 |
+
"content": "<unused2>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": false
|
| 84 |
+
},
|
| 85 |
+
"10": {
|
| 86 |
+
"content": "<unused3>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": false
|
| 92 |
+
},
|
| 93 |
+
"11": {
|
| 94 |
+
"content": "<unused4>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": false
|
| 100 |
+
},
|
| 101 |
+
"12": {
|
| 102 |
+
"content": "<unused5>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": false
|
| 108 |
+
},
|
| 109 |
+
"13": {
|
| 110 |
+
"content": "<unused6>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": false
|
| 116 |
+
},
|
| 117 |
+
"14": {
|
| 118 |
+
"content": "<unused7>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"15": {
|
| 126 |
+
"content": "<unused8>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"16": {
|
| 134 |
+
"content": "<unused9>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"17": {
|
| 142 |
+
"content": "<unused10>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"18": {
|
| 150 |
+
"content": "<unused11>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"19": {
|
| 158 |
+
"content": "<unused12>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"20": {
|
| 166 |
+
"content": "<unused13>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"21": {
|
| 174 |
+
"content": "<unused14>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"22": {
|
| 182 |
+
"content": "<unused15>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": false,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": false
|
| 188 |
+
},
|
| 189 |
+
"23": {
|
| 190 |
+
"content": "<unused16>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": false,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": false
|
| 196 |
+
},
|
| 197 |
+
"24": {
|
| 198 |
+
"content": "<unused17>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": false,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": false
|
| 204 |
+
},
|
| 205 |
+
"25": {
|
| 206 |
+
"content": "<unused18>",
|
| 207 |
+
"lstrip": false,
|
| 208 |
+
"normalized": false,
|
| 209 |
+
"rstrip": false,
|
| 210 |
+
"single_word": false,
|
| 211 |
+
"special": false
|
| 212 |
+
},
|
| 213 |
+
"26": {
|
| 214 |
+
"content": "<unused19>",
|
| 215 |
+
"lstrip": false,
|
| 216 |
+
"normalized": false,
|
| 217 |
+
"rstrip": false,
|
| 218 |
+
"single_word": false,
|
| 219 |
+
"special": false
|
| 220 |
+
},
|
| 221 |
+
"27": {
|
| 222 |
+
"content": "<unused20>",
|
| 223 |
+
"lstrip": false,
|
| 224 |
+
"normalized": false,
|
| 225 |
+
"rstrip": false,
|
| 226 |
+
"single_word": false,
|
| 227 |
+
"special": false
|
| 228 |
+
},
|
| 229 |
+
"28": {
|
| 230 |
+
"content": "<unused21>",
|
| 231 |
+
"lstrip": false,
|
| 232 |
+
"normalized": false,
|
| 233 |
+
"rstrip": false,
|
| 234 |
+
"single_word": false,
|
| 235 |
+
"special": false
|
| 236 |
+
},
|
| 237 |
+
"29": {
|
| 238 |
+
"content": "<unused22>",
|
| 239 |
+
"lstrip": false,
|
| 240 |
+
"normalized": false,
|
| 241 |
+
"rstrip": false,
|
| 242 |
+
"single_word": false,
|
| 243 |
+
"special": false
|
| 244 |
+
},
|
| 245 |
+
"30": {
|
| 246 |
+
"content": "<unused23>",
|
| 247 |
+
"lstrip": false,
|
| 248 |
+
"normalized": false,
|
| 249 |
+
"rstrip": false,
|
| 250 |
+
"single_word": false,
|
| 251 |
+
"special": false
|
| 252 |
+
},
|
| 253 |
+
"31": {
|
| 254 |
+
"content": "<unused24>",
|
| 255 |
+
"lstrip": false,
|
| 256 |
+
"normalized": false,
|
| 257 |
+
"rstrip": false,
|
| 258 |
+
"single_word": false,
|
| 259 |
+
"special": false
|
| 260 |
+
},
|
| 261 |
+
"32": {
|
| 262 |
+
"content": "<unused25>",
|
| 263 |
+
"lstrip": false,
|
| 264 |
+
"normalized": false,
|
| 265 |
+
"rstrip": false,
|
| 266 |
+
"single_word": false,
|
| 267 |
+
"special": false
|
| 268 |
+
},
|
| 269 |
+
"33": {
|
| 270 |
+
"content": "<unused26>",
|
| 271 |
+
"lstrip": false,
|
| 272 |
+
"normalized": false,
|
| 273 |
+
"rstrip": false,
|
| 274 |
+
"single_word": false,
|
| 275 |
+
"special": false
|
| 276 |
+
},
|
| 277 |
+
"34": {
|
| 278 |
+
"content": "<unused27>",
|
| 279 |
+
"lstrip": false,
|
| 280 |
+
"normalized": false,
|
| 281 |
+
"rstrip": false,
|
| 282 |
+
"single_word": false,
|
| 283 |
+
"special": false
|
| 284 |
+
},
|
| 285 |
+
"35": {
|
| 286 |
+
"content": "<unused28>",
|
| 287 |
+
"lstrip": false,
|
| 288 |
+
"normalized": false,
|
| 289 |
+
"rstrip": false,
|
| 290 |
+
"single_word": false,
|
| 291 |
+
"special": false
|
| 292 |
+
},
|
| 293 |
+
"36": {
|
| 294 |
+
"content": "<unused29>",
|
| 295 |
+
"lstrip": false,
|
| 296 |
+
"normalized": false,
|
| 297 |
+
"rstrip": false,
|
| 298 |
+
"single_word": false,
|
| 299 |
+
"special": false
|
| 300 |
+
},
|
| 301 |
+
"37": {
|
| 302 |
+
"content": "<unused30>",
|
| 303 |
+
"lstrip": false,
|
| 304 |
+
"normalized": false,
|
| 305 |
+
"rstrip": false,
|
| 306 |
+
"single_word": false,
|
| 307 |
+
"special": false
|
| 308 |
+
},
|
| 309 |
+
"38": {
|
| 310 |
+
"content": "<unused31>",
|
| 311 |
+
"lstrip": false,
|
| 312 |
+
"normalized": false,
|
| 313 |
+
"rstrip": false,
|
| 314 |
+
"single_word": false,
|
| 315 |
+
"special": false
|
| 316 |
+
},
|
| 317 |
+
"39": {
|
| 318 |
+
"content": "<unused32>",
|
| 319 |
+
"lstrip": false,
|
| 320 |
+
"normalized": false,
|
| 321 |
+
"rstrip": false,
|
| 322 |
+
"single_word": false,
|
| 323 |
+
"special": false
|
| 324 |
+
},
|
| 325 |
+
"40": {
|
| 326 |
+
"content": "<unused33>",
|
| 327 |
+
"lstrip": false,
|
| 328 |
+
"normalized": false,
|
| 329 |
+
"rstrip": false,
|
| 330 |
+
"single_word": false,
|
| 331 |
+
"special": false
|
| 332 |
+
},
|
| 333 |
+
"41": {
|
| 334 |
+
"content": "<unused34>",
|
| 335 |
+
"lstrip": false,
|
| 336 |
+
"normalized": false,
|
| 337 |
+
"rstrip": false,
|
| 338 |
+
"single_word": false,
|
| 339 |
+
"special": false
|
| 340 |
+
},
|
| 341 |
+
"42": {
|
| 342 |
+
"content": "<unused35>",
|
| 343 |
+
"lstrip": false,
|
| 344 |
+
"normalized": false,
|
| 345 |
+
"rstrip": false,
|
| 346 |
+
"single_word": false,
|
| 347 |
+
"special": false
|
| 348 |
+
},
|
| 349 |
+
"43": {
|
| 350 |
+
"content": "<unused36>",
|
| 351 |
+
"lstrip": false,
|
| 352 |
+
"normalized": false,
|
| 353 |
+
"rstrip": false,
|
| 354 |
+
"single_word": false,
|
| 355 |
+
"special": false
|
| 356 |
+
},
|
| 357 |
+
"44": {
|
| 358 |
+
"content": "<unused37>",
|
| 359 |
+
"lstrip": false,
|
| 360 |
+
"normalized": false,
|
| 361 |
+
"rstrip": false,
|
| 362 |
+
"single_word": false,
|
| 363 |
+
"special": false
|
| 364 |
+
},
|
| 365 |
+
"45": {
|
| 366 |
+
"content": "<unused38>",
|
| 367 |
+
"lstrip": false,
|
| 368 |
+
"normalized": false,
|
| 369 |
+
"rstrip": false,
|
| 370 |
+
"single_word": false,
|
| 371 |
+
"special": false
|
| 372 |
+
},
|
| 373 |
+
"46": {
|
| 374 |
+
"content": "<unused39>",
|
| 375 |
+
"lstrip": false,
|
| 376 |
+
"normalized": false,
|
| 377 |
+
"rstrip": false,
|
| 378 |
+
"single_word": false,
|
| 379 |
+
"special": false
|
| 380 |
+
},
|
| 381 |
+
"47": {
|
| 382 |
+
"content": "<unused40>",
|
| 383 |
+
"lstrip": false,
|
| 384 |
+
"normalized": false,
|
| 385 |
+
"rstrip": false,
|
| 386 |
+
"single_word": false,
|
| 387 |
+
"special": false
|
| 388 |
+
},
|
| 389 |
+
"48": {
|
| 390 |
+
"content": "<unused41>",
|
| 391 |
+
"lstrip": false,
|
| 392 |
+
"normalized": false,
|
| 393 |
+
"rstrip": false,
|
| 394 |
+
"single_word": false,
|
| 395 |
+
"special": false
|
| 396 |
+
},
|
| 397 |
+
"49": {
|
| 398 |
+
"content": "<unused42>",
|
| 399 |
+
"lstrip": false,
|
| 400 |
+
"normalized": false,
|
| 401 |
+
"rstrip": false,
|
| 402 |
+
"single_word": false,
|
| 403 |
+
"special": false
|
| 404 |
+
},
|
| 405 |
+
"50": {
|
| 406 |
+
"content": "<unused43>",
|
| 407 |
+
"lstrip": false,
|
| 408 |
+
"normalized": false,
|
| 409 |
+
"rstrip": false,
|
| 410 |
+
"single_word": false,
|
| 411 |
+
"special": false
|
| 412 |
+
},
|
| 413 |
+
"51": {
|
| 414 |
+
"content": "<unused44>",
|
| 415 |
+
"lstrip": false,
|
| 416 |
+
"normalized": false,
|
| 417 |
+
"rstrip": false,
|
| 418 |
+
"single_word": false,
|
| 419 |
+
"special": false
|
| 420 |
+
},
|
| 421 |
+
"52": {
|
| 422 |
+
"content": "<unused45>",
|
| 423 |
+
"lstrip": false,
|
| 424 |
+
"normalized": false,
|
| 425 |
+
"rstrip": false,
|
| 426 |
+
"single_word": false,
|
| 427 |
+
"special": false
|
| 428 |
+
},
|
| 429 |
+
"53": {
|
| 430 |
+
"content": "<unused46>",
|
| 431 |
+
"lstrip": false,
|
| 432 |
+
"normalized": false,
|
| 433 |
+
"rstrip": false,
|
| 434 |
+
"single_word": false,
|
| 435 |
+
"special": false
|
| 436 |
+
},
|
| 437 |
+
"54": {
|
| 438 |
+
"content": "<unused47>",
|
| 439 |
+
"lstrip": false,
|
| 440 |
+
"normalized": false,
|
| 441 |
+
"rstrip": false,
|
| 442 |
+
"single_word": false,
|
| 443 |
+
"special": false
|
| 444 |
+
},
|
| 445 |
+
"55": {
|
| 446 |
+
"content": "<unused48>",
|
| 447 |
+
"lstrip": false,
|
| 448 |
+
"normalized": false,
|
| 449 |
+
"rstrip": false,
|
| 450 |
+
"single_word": false,
|
| 451 |
+
"special": false
|
| 452 |
+
},
|
| 453 |
+
"56": {
|
| 454 |
+
"content": "<unused49>",
|
| 455 |
+
"lstrip": false,
|
| 456 |
+
"normalized": false,
|
| 457 |
+
"rstrip": false,
|
| 458 |
+
"single_word": false,
|
| 459 |
+
"special": false
|
| 460 |
+
},
|
| 461 |
+
"57": {
|
| 462 |
+
"content": "<unused50>",
|
| 463 |
+
"lstrip": false,
|
| 464 |
+
"normalized": false,
|
| 465 |
+
"rstrip": false,
|
| 466 |
+
"single_word": false,
|
| 467 |
+
"special": false
|
| 468 |
+
},
|
| 469 |
+
"58": {
|
| 470 |
+
"content": "<unused51>",
|
| 471 |
+
"lstrip": false,
|
| 472 |
+
"normalized": false,
|
| 473 |
+
"rstrip": false,
|
| 474 |
+
"single_word": false,
|
| 475 |
+
"special": false
|
| 476 |
+
},
|
| 477 |
+
"59": {
|
| 478 |
+
"content": "<unused52>",
|
| 479 |
+
"lstrip": false,
|
| 480 |
+
"normalized": false,
|
| 481 |
+
"rstrip": false,
|
| 482 |
+
"single_word": false,
|
| 483 |
+
"special": false
|
| 484 |
+
},
|
| 485 |
+
"60": {
|
| 486 |
+
"content": "<unused53>",
|
| 487 |
+
"lstrip": false,
|
| 488 |
+
"normalized": false,
|
| 489 |
+
"rstrip": false,
|
| 490 |
+
"single_word": false,
|
| 491 |
+
"special": false
|
| 492 |
+
},
|
| 493 |
+
"61": {
|
| 494 |
+
"content": "<unused54>",
|
| 495 |
+
"lstrip": false,
|
| 496 |
+
"normalized": false,
|
| 497 |
+
"rstrip": false,
|
| 498 |
+
"single_word": false,
|
| 499 |
+
"special": false
|
| 500 |
+
},
|
| 501 |
+
"62": {
|
| 502 |
+
"content": "<unused55>",
|
| 503 |
+
"lstrip": false,
|
| 504 |
+
"normalized": false,
|
| 505 |
+
"rstrip": false,
|
| 506 |
+
"single_word": false,
|
| 507 |
+
"special": false
|
| 508 |
+
},
|
| 509 |
+
"63": {
|
| 510 |
+
"content": "<unused56>",
|
| 511 |
+
"lstrip": false,
|
| 512 |
+
"normalized": false,
|
| 513 |
+
"rstrip": false,
|
| 514 |
+
"single_word": false,
|
| 515 |
+
"special": false
|
| 516 |
+
},
|
| 517 |
+
"64": {
|
| 518 |
+
"content": "<unused57>",
|
| 519 |
+
"lstrip": false,
|
| 520 |
+
"normalized": false,
|
| 521 |
+
"rstrip": false,
|
| 522 |
+
"single_word": false,
|
| 523 |
+
"special": false
|
| 524 |
+
},
|
| 525 |
+
"65": {
|
| 526 |
+
"content": "<unused58>",
|
| 527 |
+
"lstrip": false,
|
| 528 |
+
"normalized": false,
|
| 529 |
+
"rstrip": false,
|
| 530 |
+
"single_word": false,
|
| 531 |
+
"special": false
|
| 532 |
+
},
|
| 533 |
+
"66": {
|
| 534 |
+
"content": "<unused59>",
|
| 535 |
+
"lstrip": false,
|
| 536 |
+
"normalized": false,
|
| 537 |
+
"rstrip": false,
|
| 538 |
+
"single_word": false,
|
| 539 |
+
"special": false
|
| 540 |
+
},
|
| 541 |
+
"67": {
|
| 542 |
+
"content": "<unused60>",
|
| 543 |
+
"lstrip": false,
|
| 544 |
+
"normalized": false,
|
| 545 |
+
"rstrip": false,
|
| 546 |
+
"single_word": false,
|
| 547 |
+
"special": false
|
| 548 |
+
},
|
| 549 |
+
"68": {
|
| 550 |
+
"content": "<unused61>",
|
| 551 |
+
"lstrip": false,
|
| 552 |
+
"normalized": false,
|
| 553 |
+
"rstrip": false,
|
| 554 |
+
"single_word": false,
|
| 555 |
+
"special": false
|
| 556 |
+
},
|
| 557 |
+
"69": {
|
| 558 |
+
"content": "<unused62>",
|
| 559 |
+
"lstrip": false,
|
| 560 |
+
"normalized": false,
|
| 561 |
+
"rstrip": false,
|
| 562 |
+
"single_word": false,
|
| 563 |
+
"special": false
|
| 564 |
+
},
|
| 565 |
+
"70": {
|
| 566 |
+
"content": "<unused63>",
|
| 567 |
+
"lstrip": false,
|
| 568 |
+
"normalized": false,
|
| 569 |
+
"rstrip": false,
|
| 570 |
+
"single_word": false,
|
| 571 |
+
"special": false
|
| 572 |
+
},
|
| 573 |
+
"71": {
|
| 574 |
+
"content": "<unused64>",
|
| 575 |
+
"lstrip": false,
|
| 576 |
+
"normalized": false,
|
| 577 |
+
"rstrip": false,
|
| 578 |
+
"single_word": false,
|
| 579 |
+
"special": false
|
| 580 |
+
},
|
| 581 |
+
"72": {
|
| 582 |
+
"content": "<unused65>",
|
| 583 |
+
"lstrip": false,
|
| 584 |
+
"normalized": false,
|
| 585 |
+
"rstrip": false,
|
| 586 |
+
"single_word": false,
|
| 587 |
+
"special": false
|
| 588 |
+
},
|
| 589 |
+
"73": {
|
| 590 |
+
"content": "<unused66>",
|
| 591 |
+
"lstrip": false,
|
| 592 |
+
"normalized": false,
|
| 593 |
+
"rstrip": false,
|
| 594 |
+
"single_word": false,
|
| 595 |
+
"special": false
|
| 596 |
+
},
|
| 597 |
+
"74": {
|
| 598 |
+
"content": "<unused67>",
|
| 599 |
+
"lstrip": false,
|
| 600 |
+
"normalized": false,
|
| 601 |
+
"rstrip": false,
|
| 602 |
+
"single_word": false,
|
| 603 |
+
"special": false
|
| 604 |
+
},
|
| 605 |
+
"75": {
|
| 606 |
+
"content": "<unused68>",
|
| 607 |
+
"lstrip": false,
|
| 608 |
+
"normalized": false,
|
| 609 |
+
"rstrip": false,
|
| 610 |
+
"single_word": false,
|
| 611 |
+
"special": false
|
| 612 |
+
},
|
| 613 |
+
"76": {
|
| 614 |
+
"content": "<unused69>",
|
| 615 |
+
"lstrip": false,
|
| 616 |
+
"normalized": false,
|
| 617 |
+
"rstrip": false,
|
| 618 |
+
"single_word": false,
|
| 619 |
+
"special": false
|
| 620 |
+
},
|
| 621 |
+
"77": {
|
| 622 |
+
"content": "<unused70>",
|
| 623 |
+
"lstrip": false,
|
| 624 |
+
"normalized": false,
|
| 625 |
+
"rstrip": false,
|
| 626 |
+
"single_word": false,
|
| 627 |
+
"special": false
|
| 628 |
+
},
|
| 629 |
+
"78": {
|
| 630 |
+
"content": "<unused71>",
|
| 631 |
+
"lstrip": false,
|
| 632 |
+
"normalized": false,
|
| 633 |
+
"rstrip": false,
|
| 634 |
+
"single_word": false,
|
| 635 |
+
"special": false
|
| 636 |
+
},
|
| 637 |
+
"79": {
|
| 638 |
+
"content": "<unused72>",
|
| 639 |
+
"lstrip": false,
|
| 640 |
+
"normalized": false,
|
| 641 |
+
"rstrip": false,
|
| 642 |
+
"single_word": false,
|
| 643 |
+
"special": false
|
| 644 |
+
},
|
| 645 |
+
"80": {
|
| 646 |
+
"content": "<unused73>",
|
| 647 |
+
"lstrip": false,
|
| 648 |
+
"normalized": false,
|
| 649 |
+
"rstrip": false,
|
| 650 |
+
"single_word": false,
|
| 651 |
+
"special": false
|
| 652 |
+
},
|
| 653 |
+
"81": {
|
| 654 |
+
"content": "<unused74>",
|
| 655 |
+
"lstrip": false,
|
| 656 |
+
"normalized": false,
|
| 657 |
+
"rstrip": false,
|
| 658 |
+
"single_word": false,
|
| 659 |
+
"special": false
|
| 660 |
+
},
|
| 661 |
+
"82": {
|
| 662 |
+
"content": "<unused75>",
|
| 663 |
+
"lstrip": false,
|
| 664 |
+
"normalized": false,
|
| 665 |
+
"rstrip": false,
|
| 666 |
+
"single_word": false,
|
| 667 |
+
"special": false
|
| 668 |
+
},
|
| 669 |
+
"83": {
|
| 670 |
+
"content": "<unused76>",
|
| 671 |
+
"lstrip": false,
|
| 672 |
+
"normalized": false,
|
| 673 |
+
"rstrip": false,
|
| 674 |
+
"single_word": false,
|
| 675 |
+
"special": false
|
| 676 |
+
},
|
| 677 |
+
"84": {
|
| 678 |
+
"content": "<unused77>",
|
| 679 |
+
"lstrip": false,
|
| 680 |
+
"normalized": false,
|
| 681 |
+
"rstrip": false,
|
| 682 |
+
"single_word": false,
|
| 683 |
+
"special": false
|
| 684 |
+
},
|
| 685 |
+
"85": {
|
| 686 |
+
"content": "<unused78>",
|
| 687 |
+
"lstrip": false,
|
| 688 |
+
"normalized": false,
|
| 689 |
+
"rstrip": false,
|
| 690 |
+
"single_word": false,
|
| 691 |
+
"special": false
|
| 692 |
+
},
|
| 693 |
+
"86": {
|
| 694 |
+
"content": "<unused79>",
|
| 695 |
+
"lstrip": false,
|
| 696 |
+
"normalized": false,
|
| 697 |
+
"rstrip": false,
|
| 698 |
+
"single_word": false,
|
| 699 |
+
"special": false
|
| 700 |
+
},
|
| 701 |
+
"87": {
|
| 702 |
+
"content": "<unused80>",
|
| 703 |
+
"lstrip": false,
|
| 704 |
+
"normalized": false,
|
| 705 |
+
"rstrip": false,
|
| 706 |
+
"single_word": false,
|
| 707 |
+
"special": false
|
| 708 |
+
},
|
| 709 |
+
"88": {
|
| 710 |
+
"content": "<unused81>",
|
| 711 |
+
"lstrip": false,
|
| 712 |
+
"normalized": false,
|
| 713 |
+
"rstrip": false,
|
| 714 |
+
"single_word": false,
|
| 715 |
+
"special": false
|
| 716 |
+
},
|
| 717 |
+
"89": {
|
| 718 |
+
"content": "<unused82>",
|
| 719 |
+
"lstrip": false,
|
| 720 |
+
"normalized": false,
|
| 721 |
+
"rstrip": false,
|
| 722 |
+
"single_word": false,
|
| 723 |
+
"special": false
|
| 724 |
+
},
|
| 725 |
+
"90": {
|
| 726 |
+
"content": "<unused83>",
|
| 727 |
+
"lstrip": false,
|
| 728 |
+
"normalized": false,
|
| 729 |
+
"rstrip": false,
|
| 730 |
+
"single_word": false,
|
| 731 |
+
"special": false
|
| 732 |
+
},
|
| 733 |
+
"91": {
|
| 734 |
+
"content": "<unused84>",
|
| 735 |
+
"lstrip": false,
|
| 736 |
+
"normalized": false,
|
| 737 |
+
"rstrip": false,
|
| 738 |
+
"single_word": false,
|
| 739 |
+
"special": false
|
| 740 |
+
},
|
| 741 |
+
"92": {
|
| 742 |
+
"content": "<unused85>",
|
| 743 |
+
"lstrip": false,
|
| 744 |
+
"normalized": false,
|
| 745 |
+
"rstrip": false,
|
| 746 |
+
"single_word": false,
|
| 747 |
+
"special": false
|
| 748 |
+
},
|
| 749 |
+
"93": {
|
| 750 |
+
"content": "<unused86>",
|
| 751 |
+
"lstrip": false,
|
| 752 |
+
"normalized": false,
|
| 753 |
+
"rstrip": false,
|
| 754 |
+
"single_word": false,
|
| 755 |
+
"special": false
|
| 756 |
+
},
|
| 757 |
+
"94": {
|
| 758 |
+
"content": "<unused87>",
|
| 759 |
+
"lstrip": false,
|
| 760 |
+
"normalized": false,
|
| 761 |
+
"rstrip": false,
|
| 762 |
+
"single_word": false,
|
| 763 |
+
"special": false
|
| 764 |
+
},
|
| 765 |
+
"95": {
|
| 766 |
+
"content": "<unused88>",
|
| 767 |
+
"lstrip": false,
|
| 768 |
+
"normalized": false,
|
| 769 |
+
"rstrip": false,
|
| 770 |
+
"single_word": false,
|
| 771 |
+
"special": false
|
| 772 |
+
},
|
| 773 |
+
"96": {
|
| 774 |
+
"content": "<unused89>",
|
| 775 |
+
"lstrip": false,
|
| 776 |
+
"normalized": false,
|
| 777 |
+
"rstrip": false,
|
| 778 |
+
"single_word": false,
|
| 779 |
+
"special": false
|
| 780 |
+
},
|
| 781 |
+
"97": {
|
| 782 |
+
"content": "<unused90>",
|
| 783 |
+
"lstrip": false,
|
| 784 |
+
"normalized": false,
|
| 785 |
+
"rstrip": false,
|
| 786 |
+
"single_word": false,
|
| 787 |
+
"special": false
|
| 788 |
+
},
|
| 789 |
+
"98": {
|
| 790 |
+
"content": "<unused91>",
|
| 791 |
+
"lstrip": false,
|
| 792 |
+
"normalized": false,
|
| 793 |
+
"rstrip": false,
|
| 794 |
+
"single_word": false,
|
| 795 |
+
"special": false
|
| 796 |
+
},
|
| 797 |
+
"99": {
|
| 798 |
+
"content": "<unused92>",
|
| 799 |
+
"lstrip": false,
|
| 800 |
+
"normalized": false,
|
| 801 |
+
"rstrip": false,
|
| 802 |
+
"single_word": false,
|
| 803 |
+
"special": false
|
| 804 |
+
},
|
| 805 |
+
"100": {
|
| 806 |
+
"content": "<unused93>",
|
| 807 |
+
"lstrip": false,
|
| 808 |
+
"normalized": false,
|
| 809 |
+
"rstrip": false,
|
| 810 |
+
"single_word": false,
|
| 811 |
+
"special": false
|
| 812 |
+
},
|
| 813 |
+
"101": {
|
| 814 |
+
"content": "<unused94>",
|
| 815 |
+
"lstrip": false,
|
| 816 |
+
"normalized": false,
|
| 817 |
+
"rstrip": false,
|
| 818 |
+
"single_word": false,
|
| 819 |
+
"special": false
|
| 820 |
+
},
|
| 821 |
+
"102": {
|
| 822 |
+
"content": "<unused95>",
|
| 823 |
+
"lstrip": false,
|
| 824 |
+
"normalized": false,
|
| 825 |
+
"rstrip": false,
|
| 826 |
+
"single_word": false,
|
| 827 |
+
"special": false
|
| 828 |
+
},
|
| 829 |
+
"103": {
|
| 830 |
+
"content": "<unused96>",
|
| 831 |
+
"lstrip": false,
|
| 832 |
+
"normalized": false,
|
| 833 |
+
"rstrip": false,
|
| 834 |
+
"single_word": false,
|
| 835 |
+
"special": false
|
| 836 |
+
},
|
| 837 |
+
"104": {
|
| 838 |
+
"content": "<unused97>",
|
| 839 |
+
"lstrip": false,
|
| 840 |
+
"normalized": false,
|
| 841 |
+
"rstrip": false,
|
| 842 |
+
"single_word": false,
|
| 843 |
+
"special": false
|
| 844 |
+
},
|
| 845 |
+
"105": {
|
| 846 |
+
"content": "<unused98>",
|
| 847 |
+
"lstrip": false,
|
| 848 |
+
"normalized": false,
|
| 849 |
+
"rstrip": false,
|
| 850 |
+
"single_word": false,
|
| 851 |
+
"special": false
|
| 852 |
+
},
|
| 853 |
+
"106": {
|
| 854 |
+
"content": "<start_of_turn>",
|
| 855 |
+
"lstrip": false,
|
| 856 |
+
"normalized": false,
|
| 857 |
+
"rstrip": false,
|
| 858 |
+
"single_word": false,
|
| 859 |
+
"special": true
|
| 860 |
+
},
|
| 861 |
+
"107": {
|
| 862 |
+
"content": "<end_of_turn>",
|
| 863 |
+
"lstrip": false,
|
| 864 |
+
"normalized": false,
|
| 865 |
+
"rstrip": false,
|
| 866 |
+
"single_word": false,
|
| 867 |
+
"special": true
|
| 868 |
+
},
|
| 869 |
+
"108": {
|
| 870 |
+
"content": "\n",
|
| 871 |
+
"lstrip": false,
|
| 872 |
+
"normalized": false,
|
| 873 |
+
"rstrip": false,
|
| 874 |
+
"single_word": false,
|
| 875 |
+
"special": false
|
| 876 |
+
},
|
| 877 |
+
"109": {
|
| 878 |
+
"content": "\n\n",
|
| 879 |
+
"lstrip": false,
|
| 880 |
+
"normalized": false,
|
| 881 |
+
"rstrip": false,
|
| 882 |
+
"single_word": false,
|
| 883 |
+
"special": false
|
| 884 |
+
},
|
| 885 |
+
"110": {
|
| 886 |
+
"content": "\n\n\n",
|
| 887 |
+
"lstrip": false,
|
| 888 |
+
"normalized": false,
|
| 889 |
+
"rstrip": false,
|
| 890 |
+
"single_word": false,
|
| 891 |
+
"special": false
|
| 892 |
+
},
|
| 893 |
+
"111": {
|
| 894 |
+
"content": "\n\n\n\n",
|
| 895 |
+
"lstrip": false,
|
| 896 |
+
"normalized": false,
|
| 897 |
+
"rstrip": false,
|
| 898 |
+
"single_word": false,
|
| 899 |
+
"special": false
|
| 900 |
+
},
|
| 901 |
+
"112": {
|
| 902 |
+
"content": "\n\n\n\n\n",
|
| 903 |
+
"lstrip": false,
|
| 904 |
+
"normalized": false,
|
| 905 |
+
"rstrip": false,
|
| 906 |
+
"single_word": false,
|
| 907 |
+
"special": false
|
| 908 |
+
},
|
| 909 |
+
"113": {
|
| 910 |
+
"content": "\n\n\n\n\n\n",
|
| 911 |
+
"lstrip": false,
|
| 912 |
+
"normalized": false,
|
| 913 |
+
"rstrip": false,
|
| 914 |
+
"single_word": false,
|
| 915 |
+
"special": false
|
| 916 |
+
},
|
| 917 |
+
"114": {
|
| 918 |
+
"content": "\n\n\n\n\n\n\n",
|
| 919 |
+
"lstrip": false,
|
| 920 |
+
"normalized": false,
|
| 921 |
+
"rstrip": false,
|
| 922 |
+
"single_word": false,
|
| 923 |
+
"special": false
|
| 924 |
+
},
|
| 925 |
+
"115": {
|
| 926 |
+
"content": "\n\n\n\n\n\n\n\n",
|
| 927 |
+
"lstrip": false,
|
| 928 |
+
"normalized": false,
|
| 929 |
+
"rstrip": false,
|
| 930 |
+
"single_word": false,
|
| 931 |
+
"special": false
|
| 932 |
+
},
|
| 933 |
+
"116": {
|
| 934 |
+
"content": "\n\n\n\n\n\n\n\n\n",
|
| 935 |
+
"lstrip": false,
|
| 936 |
+
"normalized": false,
|
| 937 |
+
"rstrip": false,
|
| 938 |
+
"single_word": false,
|
| 939 |
+
"special": false
|
| 940 |
+
},
|
| 941 |
+
"117": {
|
| 942 |
+
"content": "\n\n\n\n\n\n\n\n\n\n",
|
| 943 |
+
"lstrip": false,
|
| 944 |
+
"normalized": false,
|
| 945 |
+
"rstrip": false,
|
| 946 |
+
"single_word": false,
|
| 947 |
+
"special": false
|
| 948 |
+
},
|
| 949 |
+
"118": {
|
| 950 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n",
|
| 951 |
+
"lstrip": false,
|
| 952 |
+
"normalized": false,
|
| 953 |
+
"rstrip": false,
|
| 954 |
+
"single_word": false,
|
| 955 |
+
"special": false
|
| 956 |
+
},
|
| 957 |
+
"119": {
|
| 958 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 959 |
+
"lstrip": false,
|
| 960 |
+
"normalized": false,
|
| 961 |
+
"rstrip": false,
|
| 962 |
+
"single_word": false,
|
| 963 |
+
"special": false
|
| 964 |
+
},
|
| 965 |
+
"120": {
|
| 966 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 967 |
+
"lstrip": false,
|
| 968 |
+
"normalized": false,
|
| 969 |
+
"rstrip": false,
|
| 970 |
+
"single_word": false,
|
| 971 |
+
"special": false
|
| 972 |
+
},
|
| 973 |
+
"121": {
|
| 974 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 975 |
+
"lstrip": false,
|
| 976 |
+
"normalized": false,
|
| 977 |
+
"rstrip": false,
|
| 978 |
+
"single_word": false,
|
| 979 |
+
"special": false
|
| 980 |
+
},
|
| 981 |
+
"122": {
|
| 982 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 983 |
+
"lstrip": false,
|
| 984 |
+
"normalized": false,
|
| 985 |
+
"rstrip": false,
|
| 986 |
+
"single_word": false,
|
| 987 |
+
"special": false
|
| 988 |
+
},
|
| 989 |
+
"123": {
|
| 990 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 991 |
+
"lstrip": false,
|
| 992 |
+
"normalized": false,
|
| 993 |
+
"rstrip": false,
|
| 994 |
+
"single_word": false,
|
| 995 |
+
"special": false
|
| 996 |
+
},
|
| 997 |
+
"124": {
|
| 998 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 999 |
+
"lstrip": false,
|
| 1000 |
+
"normalized": false,
|
| 1001 |
+
"rstrip": false,
|
| 1002 |
+
"single_word": false,
|
| 1003 |
+
"special": false
|
| 1004 |
+
},
|
| 1005 |
+
"125": {
|
| 1006 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1007 |
+
"lstrip": false,
|
| 1008 |
+
"normalized": false,
|
| 1009 |
+
"rstrip": false,
|
| 1010 |
+
"single_word": false,
|
| 1011 |
+
"special": false
|
| 1012 |
+
},
|
| 1013 |
+
"126": {
|
| 1014 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1015 |
+
"lstrip": false,
|
| 1016 |
+
"normalized": false,
|
| 1017 |
+
"rstrip": false,
|
| 1018 |
+
"single_word": false,
|
| 1019 |
+
"special": false
|
| 1020 |
+
},
|
| 1021 |
+
"127": {
|
| 1022 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1023 |
+
"lstrip": false,
|
| 1024 |
+
"normalized": false,
|
| 1025 |
+
"rstrip": false,
|
| 1026 |
+
"single_word": false,
|
| 1027 |
+
"special": false
|
| 1028 |
+
},
|
| 1029 |
+
"128": {
|
| 1030 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1031 |
+
"lstrip": false,
|
| 1032 |
+
"normalized": false,
|
| 1033 |
+
"rstrip": false,
|
| 1034 |
+
"single_word": false,
|
| 1035 |
+
"special": false
|
| 1036 |
+
},
|
| 1037 |
+
"129": {
|
| 1038 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1039 |
+
"lstrip": false,
|
| 1040 |
+
"normalized": false,
|
| 1041 |
+
"rstrip": false,
|
| 1042 |
+
"single_word": false,
|
| 1043 |
+
"special": false
|
| 1044 |
+
},
|
| 1045 |
+
"130": {
|
| 1046 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1047 |
+
"lstrip": false,
|
| 1048 |
+
"normalized": false,
|
| 1049 |
+
"rstrip": false,
|
| 1050 |
+
"single_word": false,
|
| 1051 |
+
"special": false
|
| 1052 |
+
},
|
| 1053 |
+
"131": {
|
| 1054 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1055 |
+
"lstrip": false,
|
| 1056 |
+
"normalized": false,
|
| 1057 |
+
"rstrip": false,
|
| 1058 |
+
"single_word": false,
|
| 1059 |
+
"special": false
|
| 1060 |
+
},
|
| 1061 |
+
"132": {
|
| 1062 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1063 |
+
"lstrip": false,
|
| 1064 |
+
"normalized": false,
|
| 1065 |
+
"rstrip": false,
|
| 1066 |
+
"single_word": false,
|
| 1067 |
+
"special": false
|
| 1068 |
+
},
|
| 1069 |
+
"133": {
|
| 1070 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1071 |
+
"lstrip": false,
|
| 1072 |
+
"normalized": false,
|
| 1073 |
+
"rstrip": false,
|
| 1074 |
+
"single_word": false,
|
| 1075 |
+
"special": false
|
| 1076 |
+
},
|
| 1077 |
+
"134": {
|
| 1078 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1079 |
+
"lstrip": false,
|
| 1080 |
+
"normalized": false,
|
| 1081 |
+
"rstrip": false,
|
| 1082 |
+
"single_word": false,
|
| 1083 |
+
"special": false
|
| 1084 |
+
},
|
| 1085 |
+
"135": {
|
| 1086 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1087 |
+
"lstrip": false,
|
| 1088 |
+
"normalized": false,
|
| 1089 |
+
"rstrip": false,
|
| 1090 |
+
"single_word": false,
|
| 1091 |
+
"special": false
|
| 1092 |
+
},
|
| 1093 |
+
"136": {
|
| 1094 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1095 |
+
"lstrip": false,
|
| 1096 |
+
"normalized": false,
|
| 1097 |
+
"rstrip": false,
|
| 1098 |
+
"single_word": false,
|
| 1099 |
+
"special": false
|
| 1100 |
+
},
|
| 1101 |
+
"137": {
|
| 1102 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1103 |
+
"lstrip": false,
|
| 1104 |
+
"normalized": false,
|
| 1105 |
+
"rstrip": false,
|
| 1106 |
+
"single_word": false,
|
| 1107 |
+
"special": false
|
| 1108 |
+
},
|
| 1109 |
+
"138": {
|
| 1110 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1111 |
+
"lstrip": false,
|
| 1112 |
+
"normalized": false,
|
| 1113 |
+
"rstrip": false,
|
| 1114 |
+
"single_word": false,
|
| 1115 |
+
"special": false
|
| 1116 |
+
},
|
| 1117 |
+
"139": {
|
| 1118 |
+
"content": "▁▁",
|
| 1119 |
+
"lstrip": false,
|
| 1120 |
+
"normalized": false,
|
| 1121 |
+
"rstrip": false,
|
| 1122 |
+
"single_word": false,
|
| 1123 |
+
"special": false
|
| 1124 |
+
},
|
| 1125 |
+
"140": {
|
| 1126 |
+
"content": "▁▁▁",
|
| 1127 |
+
"lstrip": false,
|
| 1128 |
+
"normalized": false,
|
| 1129 |
+
"rstrip": false,
|
| 1130 |
+
"single_word": false,
|
| 1131 |
+
"special": false
|
| 1132 |
+
},
|
| 1133 |
+
"141": {
|
| 1134 |
+
"content": "▁▁▁▁",
|
| 1135 |
+
"lstrip": false,
|
| 1136 |
+
"normalized": false,
|
| 1137 |
+
"rstrip": false,
|
| 1138 |
+
"single_word": false,
|
| 1139 |
+
"special": false
|
| 1140 |
+
},
|
| 1141 |
+
"142": {
|
| 1142 |
+
"content": "▁▁▁▁▁",
|
| 1143 |
+
"lstrip": false,
|
| 1144 |
+
"normalized": false,
|
| 1145 |
+
"rstrip": false,
|
| 1146 |
+
"single_word": false,
|
| 1147 |
+
"special": false
|
| 1148 |
+
},
|
| 1149 |
+
"143": {
|
| 1150 |
+
"content": "▁▁▁▁▁▁",
|
| 1151 |
+
"lstrip": false,
|
| 1152 |
+
"normalized": false,
|
| 1153 |
+
"rstrip": false,
|
| 1154 |
+
"single_word": false,
|
| 1155 |
+
"special": false
|
| 1156 |
+
},
|
| 1157 |
+
"144": {
|
| 1158 |
+
"content": "▁▁▁▁▁▁▁",
|
| 1159 |
+
"lstrip": false,
|
| 1160 |
+
"normalized": false,
|
| 1161 |
+
"rstrip": false,
|
| 1162 |
+
"single_word": false,
|
| 1163 |
+
"special": false
|
| 1164 |
+
},
|
| 1165 |
+
"145": {
|
| 1166 |
+
"content": "▁▁▁▁▁▁▁▁",
|
| 1167 |
+
"lstrip": false,
|
| 1168 |
+
"normalized": false,
|
| 1169 |
+
"rstrip": false,
|
| 1170 |
+
"single_word": false,
|
| 1171 |
+
"special": false
|
| 1172 |
+
},
|
| 1173 |
+
"146": {
|
| 1174 |
+
"content": "▁▁▁▁▁▁▁▁▁",
|
| 1175 |
+
"lstrip": false,
|
| 1176 |
+
"normalized": false,
|
| 1177 |
+
"rstrip": false,
|
| 1178 |
+
"single_word": false,
|
| 1179 |
+
"special": false
|
| 1180 |
+
},
|
| 1181 |
+
"147": {
|
| 1182 |
+
"content": "▁▁▁▁▁▁▁▁▁▁",
|
| 1183 |
+
"lstrip": false,
|
| 1184 |
+
"normalized": false,
|
| 1185 |
+
"rstrip": false,
|
| 1186 |
+
"single_word": false,
|
| 1187 |
+
"special": false
|
| 1188 |
+
},
|
| 1189 |
+
"148": {
|
| 1190 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁",
|
| 1191 |
+
"lstrip": false,
|
| 1192 |
+
"normalized": false,
|
| 1193 |
+
"rstrip": false,
|
| 1194 |
+
"single_word": false,
|
| 1195 |
+
"special": false
|
| 1196 |
+
},
|
| 1197 |
+
"149": {
|
| 1198 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1199 |
+
"lstrip": false,
|
| 1200 |
+
"normalized": false,
|
| 1201 |
+
"rstrip": false,
|
| 1202 |
+
"single_word": false,
|
| 1203 |
+
"special": false
|
| 1204 |
+
},
|
| 1205 |
+
"150": {
|
| 1206 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1207 |
+
"lstrip": false,
|
| 1208 |
+
"normalized": false,
|
| 1209 |
+
"rstrip": false,
|
| 1210 |
+
"single_word": false,
|
| 1211 |
+
"special": false
|
| 1212 |
+
},
|
| 1213 |
+
"151": {
|
| 1214 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1215 |
+
"lstrip": false,
|
| 1216 |
+
"normalized": false,
|
| 1217 |
+
"rstrip": false,
|
| 1218 |
+
"single_word": false,
|
| 1219 |
+
"special": false
|
| 1220 |
+
},
|
| 1221 |
+
"152": {
|
| 1222 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1223 |
+
"lstrip": false,
|
| 1224 |
+
"normalized": false,
|
| 1225 |
+
"rstrip": false,
|
| 1226 |
+
"single_word": false,
|
| 1227 |
+
"special": false
|
| 1228 |
+
},
|
| 1229 |
+
"153": {
|
| 1230 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1231 |
+
"lstrip": false,
|
| 1232 |
+
"normalized": false,
|
| 1233 |
+
"rstrip": false,
|
| 1234 |
+
"single_word": false,
|
| 1235 |
+
"special": false
|
| 1236 |
+
},
|
| 1237 |
+
"154": {
|
| 1238 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1239 |
+
"lstrip": false,
|
| 1240 |
+
"normalized": false,
|
| 1241 |
+
"rstrip": false,
|
| 1242 |
+
"single_word": false,
|
| 1243 |
+
"special": false
|
| 1244 |
+
},
|
| 1245 |
+
"155": {
|
| 1246 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1247 |
+
"lstrip": false,
|
| 1248 |
+
"normalized": false,
|
| 1249 |
+
"rstrip": false,
|
| 1250 |
+
"single_word": false,
|
| 1251 |
+
"special": false
|
| 1252 |
+
},
|
| 1253 |
+
"156": {
|
| 1254 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1255 |
+
"lstrip": false,
|
| 1256 |
+
"normalized": false,
|
| 1257 |
+
"rstrip": false,
|
| 1258 |
+
"single_word": false,
|
| 1259 |
+
"special": false
|
| 1260 |
+
},
|
| 1261 |
+
"157": {
|
| 1262 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1263 |
+
"lstrip": false,
|
| 1264 |
+
"normalized": false,
|
| 1265 |
+
"rstrip": false,
|
| 1266 |
+
"single_word": false,
|
| 1267 |
+
"special": false
|
| 1268 |
+
},
|
| 1269 |
+
"158": {
|
| 1270 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1271 |
+
"lstrip": false,
|
| 1272 |
+
"normalized": false,
|
| 1273 |
+
"rstrip": false,
|
| 1274 |
+
"single_word": false,
|
| 1275 |
+
"special": false
|
| 1276 |
+
},
|
| 1277 |
+
"159": {
|
| 1278 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1279 |
+
"lstrip": false,
|
| 1280 |
+
"normalized": false,
|
| 1281 |
+
"rstrip": false,
|
| 1282 |
+
"single_word": false,
|
| 1283 |
+
"special": false
|
| 1284 |
+
},
|
| 1285 |
+
"160": {
|
| 1286 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1287 |
+
"lstrip": false,
|
| 1288 |
+
"normalized": false,
|
| 1289 |
+
"rstrip": false,
|
| 1290 |
+
"single_word": false,
|
| 1291 |
+
"special": false
|
| 1292 |
+
},
|
| 1293 |
+
"161": {
|
| 1294 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1295 |
+
"lstrip": false,
|
| 1296 |
+
"normalized": false,
|
| 1297 |
+
"rstrip": false,
|
| 1298 |
+
"single_word": false,
|
| 1299 |
+
"special": false
|
| 1300 |
+
},
|
| 1301 |
+
"162": {
|
| 1302 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1303 |
+
"lstrip": false,
|
| 1304 |
+
"normalized": false,
|
| 1305 |
+
"rstrip": false,
|
| 1306 |
+
"single_word": false,
|
| 1307 |
+
"special": false
|
| 1308 |
+
},
|
| 1309 |
+
"163": {
|
| 1310 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1311 |
+
"lstrip": false,
|
| 1312 |
+
"normalized": false,
|
| 1313 |
+
"rstrip": false,
|
| 1314 |
+
"single_word": false,
|
| 1315 |
+
"special": false
|
| 1316 |
+
},
|
| 1317 |
+
"164": {
|
| 1318 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1319 |
+
"lstrip": false,
|
| 1320 |
+
"normalized": false,
|
| 1321 |
+
"rstrip": false,
|
| 1322 |
+
"single_word": false,
|
| 1323 |
+
"special": false
|
| 1324 |
+
},
|
| 1325 |
+
"165": {
|
| 1326 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1327 |
+
"lstrip": false,
|
| 1328 |
+
"normalized": false,
|
| 1329 |
+
"rstrip": false,
|
| 1330 |
+
"single_word": false,
|
| 1331 |
+
"special": false
|
| 1332 |
+
},
|
| 1333 |
+
"166": {
|
| 1334 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1335 |
+
"lstrip": false,
|
| 1336 |
+
"normalized": false,
|
| 1337 |
+
"rstrip": false,
|
| 1338 |
+
"single_word": false,
|
| 1339 |
+
"special": false
|
| 1340 |
+
},
|
| 1341 |
+
"167": {
|
| 1342 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1343 |
+
"lstrip": false,
|
| 1344 |
+
"normalized": false,
|
| 1345 |
+
"rstrip": false,
|
| 1346 |
+
"single_word": false,
|
| 1347 |
+
"special": false
|
| 1348 |
+
},
|
| 1349 |
+
"168": {
|
| 1350 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1351 |
+
"lstrip": false,
|
| 1352 |
+
"normalized": false,
|
| 1353 |
+
"rstrip": false,
|
| 1354 |
+
"single_word": false,
|
| 1355 |
+
"special": false
|
| 1356 |
+
},
|
| 1357 |
+
"169": {
|
| 1358 |
+
"content": "<table>",
|
| 1359 |
+
"lstrip": false,
|
| 1360 |
+
"normalized": false,
|
| 1361 |
+
"rstrip": false,
|
| 1362 |
+
"single_word": false,
|
| 1363 |
+
"special": false
|
| 1364 |
+
},
|
| 1365 |
+
"170": {
|
| 1366 |
+
"content": "<caption>",
|
| 1367 |
+
"lstrip": false,
|
| 1368 |
+
"normalized": false,
|
| 1369 |
+
"rstrip": false,
|
| 1370 |
+
"single_word": false,
|
| 1371 |
+
"special": false
|
| 1372 |
+
},
|
| 1373 |
+
"171": {
|
| 1374 |
+
"content": "<thead>",
|
| 1375 |
+
"lstrip": false,
|
| 1376 |
+
"normalized": false,
|
| 1377 |
+
"rstrip": false,
|
| 1378 |
+
"single_word": false,
|
| 1379 |
+
"special": false
|
| 1380 |
+
},
|
| 1381 |
+
"172": {
|
| 1382 |
+
"content": "<tbody>",
|
| 1383 |
+
"lstrip": false,
|
| 1384 |
+
"normalized": false,
|
| 1385 |
+
"rstrip": false,
|
| 1386 |
+
"single_word": false,
|
| 1387 |
+
"special": false
|
| 1388 |
+
},
|
| 1389 |
+
"173": {
|
| 1390 |
+
"content": "<tfoot>",
|
| 1391 |
+
"lstrip": false,
|
| 1392 |
+
"normalized": false,
|
| 1393 |
+
"rstrip": false,
|
| 1394 |
+
"single_word": false,
|
| 1395 |
+
"special": false
|
| 1396 |
+
},
|
| 1397 |
+
"174": {
|
| 1398 |
+
"content": "<tr>",
|
| 1399 |
+
"lstrip": false,
|
| 1400 |
+
"normalized": false,
|
| 1401 |
+
"rstrip": false,
|
| 1402 |
+
"single_word": false,
|
| 1403 |
+
"special": false
|
| 1404 |
+
},
|
| 1405 |
+
"175": {
|
| 1406 |
+
"content": "<th>",
|
| 1407 |
+
"lstrip": false,
|
| 1408 |
+
"normalized": false,
|
| 1409 |
+
"rstrip": false,
|
| 1410 |
+
"single_word": false,
|
| 1411 |
+
"special": false
|
| 1412 |
+
},
|
| 1413 |
+
"176": {
|
| 1414 |
+
"content": "<td>",
|
| 1415 |
+
"lstrip": false,
|
| 1416 |
+
"normalized": false,
|
| 1417 |
+
"rstrip": false,
|
| 1418 |
+
"single_word": false,
|
| 1419 |
+
"special": false
|
| 1420 |
+
},
|
| 1421 |
+
"177": {
|
| 1422 |
+
"content": "</table>",
|
| 1423 |
+
"lstrip": false,
|
| 1424 |
+
"normalized": false,
|
| 1425 |
+
"rstrip": false,
|
| 1426 |
+
"single_word": false,
|
| 1427 |
+
"special": false
|
| 1428 |
+
},
|
| 1429 |
+
"178": {
|
| 1430 |
+
"content": "</caption>",
|
| 1431 |
+
"lstrip": false,
|
| 1432 |
+
"normalized": false,
|
| 1433 |
+
"rstrip": false,
|
| 1434 |
+
"single_word": false,
|
| 1435 |
+
"special": false
|
| 1436 |
+
},
|
| 1437 |
+
"179": {
|
| 1438 |
+
"content": "</thead>",
|
| 1439 |
+
"lstrip": false,
|
| 1440 |
+
"normalized": false,
|
| 1441 |
+
"rstrip": false,
|
| 1442 |
+
"single_word": false,
|
| 1443 |
+
"special": false
|
| 1444 |
+
},
|
| 1445 |
+
"180": {
|
| 1446 |
+
"content": "</tbody>",
|
| 1447 |
+
"lstrip": false,
|
| 1448 |
+
"normalized": false,
|
| 1449 |
+
"rstrip": false,
|
| 1450 |
+
"single_word": false,
|
| 1451 |
+
"special": false
|
| 1452 |
+
},
|
| 1453 |
+
"181": {
|
| 1454 |
+
"content": "</tfoot>",
|
| 1455 |
+
"lstrip": false,
|
| 1456 |
+
"normalized": false,
|
| 1457 |
+
"rstrip": false,
|
| 1458 |
+
"single_word": false,
|
| 1459 |
+
"special": false
|
| 1460 |
+
},
|
| 1461 |
+
"182": {
|
| 1462 |
+
"content": "</tr>",
|
| 1463 |
+
"lstrip": false,
|
| 1464 |
+
"normalized": false,
|
| 1465 |
+
"rstrip": false,
|
| 1466 |
+
"single_word": false,
|
| 1467 |
+
"special": false
|
| 1468 |
+
},
|
| 1469 |
+
"183": {
|
| 1470 |
+
"content": "</th>",
|
| 1471 |
+
"lstrip": false,
|
| 1472 |
+
"normalized": false,
|
| 1473 |
+
"rstrip": false,
|
| 1474 |
+
"single_word": false,
|
| 1475 |
+
"special": false
|
| 1476 |
+
},
|
| 1477 |
+
"184": {
|
| 1478 |
+
"content": "</td>",
|
| 1479 |
+
"lstrip": false,
|
| 1480 |
+
"normalized": false,
|
| 1481 |
+
"rstrip": false,
|
| 1482 |
+
"single_word": false,
|
| 1483 |
+
"special": false
|
| 1484 |
+
},
|
| 1485 |
+
"185": {
|
| 1486 |
+
"content": "<h1>",
|
| 1487 |
+
"lstrip": false,
|
| 1488 |
+
"normalized": false,
|
| 1489 |
+
"rstrip": false,
|
| 1490 |
+
"single_word": false,
|
| 1491 |
+
"special": false
|
| 1492 |
+
},
|
| 1493 |
+
"186": {
|
| 1494 |
+
"content": "<h2>",
|
| 1495 |
+
"lstrip": false,
|
| 1496 |
+
"normalized": false,
|
| 1497 |
+
"rstrip": false,
|
| 1498 |
+
"single_word": false,
|
| 1499 |
+
"special": false
|
| 1500 |
+
},
|
| 1501 |
+
"187": {
|
| 1502 |
+
"content": "<h3>",
|
| 1503 |
+
"lstrip": false,
|
| 1504 |
+
"normalized": false,
|
| 1505 |
+
"rstrip": false,
|
| 1506 |
+
"single_word": false,
|
| 1507 |
+
"special": false
|
| 1508 |
+
},
|
| 1509 |
+
"188": {
|
| 1510 |
+
"content": "<h4>",
|
| 1511 |
+
"lstrip": false,
|
| 1512 |
+
"normalized": false,
|
| 1513 |
+
"rstrip": false,
|
| 1514 |
+
"single_word": false,
|
| 1515 |
+
"special": false
|
| 1516 |
+
},
|
| 1517 |
+
"189": {
|
| 1518 |
+
"content": "<h5>",
|
| 1519 |
+
"lstrip": false,
|
| 1520 |
+
"normalized": false,
|
| 1521 |
+
"rstrip": false,
|
| 1522 |
+
"single_word": false,
|
| 1523 |
+
"special": false
|
| 1524 |
+
},
|
| 1525 |
+
"190": {
|
| 1526 |
+
"content": "<h6>",
|
| 1527 |
+
"lstrip": false,
|
| 1528 |
+
"normalized": false,
|
| 1529 |
+
"rstrip": false,
|
| 1530 |
+
"single_word": false,
|
| 1531 |
+
"special": false
|
| 1532 |
+
},
|
| 1533 |
+
"191": {
|
| 1534 |
+
"content": "<blockquote>",
|
| 1535 |
+
"lstrip": false,
|
| 1536 |
+
"normalized": false,
|
| 1537 |
+
"rstrip": false,
|
| 1538 |
+
"single_word": false,
|
| 1539 |
+
"special": false
|
| 1540 |
+
},
|
| 1541 |
+
"192": {
|
| 1542 |
+
"content": "</h1>",
|
| 1543 |
+
"lstrip": false,
|
| 1544 |
+
"normalized": false,
|
| 1545 |
+
"rstrip": false,
|
| 1546 |
+
"single_word": false,
|
| 1547 |
+
"special": false
|
| 1548 |
+
},
|
| 1549 |
+
"193": {
|
| 1550 |
+
"content": "</h2>",
|
| 1551 |
+
"lstrip": false,
|
| 1552 |
+
"normalized": false,
|
| 1553 |
+
"rstrip": false,
|
| 1554 |
+
"single_word": false,
|
| 1555 |
+
"special": false
|
| 1556 |
+
},
|
| 1557 |
+
"194": {
|
| 1558 |
+
"content": "</h3>",
|
| 1559 |
+
"lstrip": false,
|
| 1560 |
+
"normalized": false,
|
| 1561 |
+
"rstrip": false,
|
| 1562 |
+
"single_word": false,
|
| 1563 |
+
"special": false
|
| 1564 |
+
},
|
| 1565 |
+
"195": {
|
| 1566 |
+
"content": "</h4>",
|
| 1567 |
+
"lstrip": false,
|
| 1568 |
+
"normalized": false,
|
| 1569 |
+
"rstrip": false,
|
| 1570 |
+
"single_word": false,
|
| 1571 |
+
"special": false
|
| 1572 |
+
},
|
| 1573 |
+
"196": {
|
| 1574 |
+
"content": "</h5>",
|
| 1575 |
+
"lstrip": false,
|
| 1576 |
+
"normalized": false,
|
| 1577 |
+
"rstrip": false,
|
| 1578 |
+
"single_word": false,
|
| 1579 |
+
"special": false
|
| 1580 |
+
},
|
| 1581 |
+
"197": {
|
| 1582 |
+
"content": "</h6>",
|
| 1583 |
+
"lstrip": false,
|
| 1584 |
+
"normalized": false,
|
| 1585 |
+
"rstrip": false,
|
| 1586 |
+
"single_word": false,
|
| 1587 |
+
"special": false
|
| 1588 |
+
},
|
| 1589 |
+
"198": {
|
| 1590 |
+
"content": "</blockquote>",
|
| 1591 |
+
"lstrip": false,
|
| 1592 |
+
"normalized": false,
|
| 1593 |
+
"rstrip": false,
|
| 1594 |
+
"single_word": false,
|
| 1595 |
+
"special": false
|
| 1596 |
+
},
|
| 1597 |
+
"199": {
|
| 1598 |
+
"content": "<strong>",
|
| 1599 |
+
"lstrip": false,
|
| 1600 |
+
"normalized": false,
|
| 1601 |
+
"rstrip": false,
|
| 1602 |
+
"single_word": false,
|
| 1603 |
+
"special": false
|
| 1604 |
+
},
|
| 1605 |
+
"200": {
|
| 1606 |
+
"content": "<em>",
|
| 1607 |
+
"lstrip": false,
|
| 1608 |
+
"normalized": false,
|
| 1609 |
+
"rstrip": false,
|
| 1610 |
+
"single_word": false,
|
| 1611 |
+
"special": false
|
| 1612 |
+
},
|
| 1613 |
+
"201": {
|
| 1614 |
+
"content": "<b>",
|
| 1615 |
+
"lstrip": false,
|
| 1616 |
+
"normalized": false,
|
| 1617 |
+
"rstrip": false,
|
| 1618 |
+
"single_word": false,
|
| 1619 |
+
"special": false
|
| 1620 |
+
},
|
| 1621 |
+
"202": {
|
| 1622 |
+
"content": "<i>",
|
| 1623 |
+
"lstrip": false,
|
| 1624 |
+
"normalized": false,
|
| 1625 |
+
"rstrip": false,
|
| 1626 |
+
"single_word": false,
|
| 1627 |
+
"special": false
|
| 1628 |
+
},
|
| 1629 |
+
"203": {
|
| 1630 |
+
"content": "<u>",
|
| 1631 |
+
"lstrip": false,
|
| 1632 |
+
"normalized": false,
|
| 1633 |
+
"rstrip": false,
|
| 1634 |
+
"single_word": false,
|
| 1635 |
+
"special": false
|
| 1636 |
+
},
|
| 1637 |
+
"204": {
|
| 1638 |
+
"content": "<s>",
|
| 1639 |
+
"lstrip": false,
|
| 1640 |
+
"normalized": false,
|
| 1641 |
+
"rstrip": false,
|
| 1642 |
+
"single_word": false,
|
| 1643 |
+
"special": false
|
| 1644 |
+
},
|
| 1645 |
+
"205": {
|
| 1646 |
+
"content": "<sub>",
|
| 1647 |
+
"lstrip": false,
|
| 1648 |
+
"normalized": false,
|
| 1649 |
+
"rstrip": false,
|
| 1650 |
+
"single_word": false,
|
| 1651 |
+
"special": false
|
| 1652 |
+
},
|
| 1653 |
+
"206": {
|
| 1654 |
+
"content": "<sup>",
|
| 1655 |
+
"lstrip": false,
|
| 1656 |
+
"normalized": false,
|
| 1657 |
+
"rstrip": false,
|
| 1658 |
+
"single_word": false,
|
| 1659 |
+
"special": false
|
| 1660 |
+
},
|
| 1661 |
+
"207": {
|
| 1662 |
+
"content": "<code>",
|
| 1663 |
+
"lstrip": false,
|
| 1664 |
+
"normalized": false,
|
| 1665 |
+
"rstrip": false,
|
| 1666 |
+
"single_word": false,
|
| 1667 |
+
"special": false
|
| 1668 |
+
},
|
| 1669 |
+
"208": {
|
| 1670 |
+
"content": "</strong>",
|
| 1671 |
+
"lstrip": false,
|
| 1672 |
+
"normalized": false,
|
| 1673 |
+
"rstrip": false,
|
| 1674 |
+
"single_word": false,
|
| 1675 |
+
"special": false
|
| 1676 |
+
},
|
| 1677 |
+
"209": {
|
| 1678 |
+
"content": "</em>",
|
| 1679 |
+
"lstrip": false,
|
| 1680 |
+
"normalized": false,
|
| 1681 |
+
"rstrip": false,
|
| 1682 |
+
"single_word": false,
|
| 1683 |
+
"special": false
|
| 1684 |
+
},
|
| 1685 |
+
"210": {
|
| 1686 |
+
"content": "</b>",
|
| 1687 |
+
"lstrip": false,
|
| 1688 |
+
"normalized": false,
|
| 1689 |
+
"rstrip": false,
|
| 1690 |
+
"single_word": false,
|
| 1691 |
+
"special": false
|
| 1692 |
+
},
|
| 1693 |
+
"211": {
|
| 1694 |
+
"content": "</i>",
|
| 1695 |
+
"lstrip": false,
|
| 1696 |
+
"normalized": false,
|
| 1697 |
+
"rstrip": false,
|
| 1698 |
+
"single_word": false,
|
| 1699 |
+
"special": false
|
| 1700 |
+
},
|
| 1701 |
+
"212": {
|
| 1702 |
+
"content": "</u>",
|
| 1703 |
+
"lstrip": false,
|
| 1704 |
+
"normalized": false,
|
| 1705 |
+
"rstrip": false,
|
| 1706 |
+
"single_word": false,
|
| 1707 |
+
"special": false
|
| 1708 |
+
},
|
| 1709 |
+
"213": {
|
| 1710 |
+
"content": "</s>",
|
| 1711 |
+
"lstrip": false,
|
| 1712 |
+
"normalized": false,
|
| 1713 |
+
"rstrip": false,
|
| 1714 |
+
"single_word": false,
|
| 1715 |
+
"special": false
|
| 1716 |
+
},
|
| 1717 |
+
"214": {
|
| 1718 |
+
"content": "</sub>",
|
| 1719 |
+
"lstrip": false,
|
| 1720 |
+
"normalized": false,
|
| 1721 |
+
"rstrip": false,
|
| 1722 |
+
"single_word": false,
|
| 1723 |
+
"special": false
|
| 1724 |
+
},
|
| 1725 |
+
"215": {
|
| 1726 |
+
"content": "</sup>",
|
| 1727 |
+
"lstrip": false,
|
| 1728 |
+
"normalized": false,
|
| 1729 |
+
"rstrip": false,
|
| 1730 |
+
"single_word": false,
|
| 1731 |
+
"special": false
|
| 1732 |
+
},
|
| 1733 |
+
"216": {
|
| 1734 |
+
"content": "</code>",
|
| 1735 |
+
"lstrip": false,
|
| 1736 |
+
"normalized": false,
|
| 1737 |
+
"rstrip": false,
|
| 1738 |
+
"single_word": false,
|
| 1739 |
+
"special": false
|
| 1740 |
+
},
|
| 1741 |
+
"255968": {
|
| 1742 |
+
"content": "[toxicity=0]",
|
| 1743 |
+
"lstrip": false,
|
| 1744 |
+
"normalized": false,
|
| 1745 |
+
"rstrip": false,
|
| 1746 |
+
"single_word": false,
|
| 1747 |
+
"special": false
|
| 1748 |
+
},
|
| 1749 |
+
"255969": {
|
| 1750 |
+
"content": "\t\t",
|
| 1751 |
+
"lstrip": false,
|
| 1752 |
+
"normalized": false,
|
| 1753 |
+
"rstrip": false,
|
| 1754 |
+
"single_word": false,
|
| 1755 |
+
"special": false
|
| 1756 |
+
},
|
| 1757 |
+
"255970": {
|
| 1758 |
+
"content": "\t\t\t",
|
| 1759 |
+
"lstrip": false,
|
| 1760 |
+
"normalized": false,
|
| 1761 |
+
"rstrip": false,
|
| 1762 |
+
"single_word": false,
|
| 1763 |
+
"special": false
|
| 1764 |
+
},
|
| 1765 |
+
"255971": {
|
| 1766 |
+
"content": "\t\t\t\t",
|
| 1767 |
+
"lstrip": false,
|
| 1768 |
+
"normalized": false,
|
| 1769 |
+
"rstrip": false,
|
| 1770 |
+
"single_word": false,
|
| 1771 |
+
"special": false
|
| 1772 |
+
},
|
| 1773 |
+
"255972": {
|
| 1774 |
+
"content": "\t\t\t\t\t",
|
| 1775 |
+
"lstrip": false,
|
| 1776 |
+
"normalized": false,
|
| 1777 |
+
"rstrip": false,
|
| 1778 |
+
"single_word": false,
|
| 1779 |
+
"special": false
|
| 1780 |
+
},
|
| 1781 |
+
"255973": {
|
| 1782 |
+
"content": "\t\t\t\t\t\t",
|
| 1783 |
+
"lstrip": false,
|
| 1784 |
+
"normalized": false,
|
| 1785 |
+
"rstrip": false,
|
| 1786 |
+
"single_word": false,
|
| 1787 |
+
"special": false
|
| 1788 |
+
},
|
| 1789 |
+
"255974": {
|
| 1790 |
+
"content": "\t\t\t\t\t\t\t",
|
| 1791 |
+
"lstrip": false,
|
| 1792 |
+
"normalized": false,
|
| 1793 |
+
"rstrip": false,
|
| 1794 |
+
"single_word": false,
|
| 1795 |
+
"special": false
|
| 1796 |
+
},
|
| 1797 |
+
"255975": {
|
| 1798 |
+
"content": "\t\t\t\t\t\t\t\t",
|
| 1799 |
+
"lstrip": false,
|
| 1800 |
+
"normalized": false,
|
| 1801 |
+
"rstrip": false,
|
| 1802 |
+
"single_word": false,
|
| 1803 |
+
"special": false
|
| 1804 |
+
},
|
| 1805 |
+
"255976": {
|
| 1806 |
+
"content": "\t\t\t\t\t\t\t\t\t",
|
| 1807 |
+
"lstrip": false,
|
| 1808 |
+
"normalized": false,
|
| 1809 |
+
"rstrip": false,
|
| 1810 |
+
"single_word": false,
|
| 1811 |
+
"special": false
|
| 1812 |
+
},
|
| 1813 |
+
"255977": {
|
| 1814 |
+
"content": "\t\t\t\t\t\t\t\t\t\t",
|
| 1815 |
+
"lstrip": false,
|
| 1816 |
+
"normalized": false,
|
| 1817 |
+
"rstrip": false,
|
| 1818 |
+
"single_word": false,
|
| 1819 |
+
"special": false
|
| 1820 |
+
},
|
| 1821 |
+
"255978": {
|
| 1822 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t",
|
| 1823 |
+
"lstrip": false,
|
| 1824 |
+
"normalized": false,
|
| 1825 |
+
"rstrip": false,
|
| 1826 |
+
"single_word": false,
|
| 1827 |
+
"special": false
|
| 1828 |
+
},
|
| 1829 |
+
"255979": {
|
| 1830 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1831 |
+
"lstrip": false,
|
| 1832 |
+
"normalized": false,
|
| 1833 |
+
"rstrip": false,
|
| 1834 |
+
"single_word": false,
|
| 1835 |
+
"special": false
|
| 1836 |
+
},
|
| 1837 |
+
"255980": {
|
| 1838 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1839 |
+
"lstrip": false,
|
| 1840 |
+
"normalized": false,
|
| 1841 |
+
"rstrip": false,
|
| 1842 |
+
"single_word": false,
|
| 1843 |
+
"special": false
|
| 1844 |
+
},
|
| 1845 |
+
"255981": {
|
| 1846 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1847 |
+
"lstrip": false,
|
| 1848 |
+
"normalized": false,
|
| 1849 |
+
"rstrip": false,
|
| 1850 |
+
"single_word": false,
|
| 1851 |
+
"special": false
|
| 1852 |
+
},
|
| 1853 |
+
"255982": {
|
| 1854 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1855 |
+
"lstrip": false,
|
| 1856 |
+
"normalized": false,
|
| 1857 |
+
"rstrip": false,
|
| 1858 |
+
"single_word": false,
|
| 1859 |
+
"special": false
|
| 1860 |
+
},
|
| 1861 |
+
"255983": {
|
| 1862 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1863 |
+
"lstrip": false,
|
| 1864 |
+
"normalized": false,
|
| 1865 |
+
"rstrip": false,
|
| 1866 |
+
"single_word": false,
|
| 1867 |
+
"special": false
|
| 1868 |
+
},
|
| 1869 |
+
"255984": {
|
| 1870 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1871 |
+
"lstrip": false,
|
| 1872 |
+
"normalized": false,
|
| 1873 |
+
"rstrip": false,
|
| 1874 |
+
"single_word": false,
|
| 1875 |
+
"special": false
|
| 1876 |
+
},
|
| 1877 |
+
"255985": {
|
| 1878 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1879 |
+
"lstrip": false,
|
| 1880 |
+
"normalized": false,
|
| 1881 |
+
"rstrip": false,
|
| 1882 |
+
"single_word": false,
|
| 1883 |
+
"special": false
|
| 1884 |
+
},
|
| 1885 |
+
"255986": {
|
| 1886 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1887 |
+
"lstrip": false,
|
| 1888 |
+
"normalized": false,
|
| 1889 |
+
"rstrip": false,
|
| 1890 |
+
"single_word": false,
|
| 1891 |
+
"special": false
|
| 1892 |
+
},
|
| 1893 |
+
"255987": {
|
| 1894 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1895 |
+
"lstrip": false,
|
| 1896 |
+
"normalized": false,
|
| 1897 |
+
"rstrip": false,
|
| 1898 |
+
"single_word": false,
|
| 1899 |
+
"special": false
|
| 1900 |
+
},
|
| 1901 |
+
"255988": {
|
| 1902 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1903 |
+
"lstrip": false,
|
| 1904 |
+
"normalized": false,
|
| 1905 |
+
"rstrip": false,
|
| 1906 |
+
"single_word": false,
|
| 1907 |
+
"special": false
|
| 1908 |
+
},
|
| 1909 |
+
"255989": {
|
| 1910 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1911 |
+
"lstrip": false,
|
| 1912 |
+
"normalized": false,
|
| 1913 |
+
"rstrip": false,
|
| 1914 |
+
"single_word": false,
|
| 1915 |
+
"special": false
|
| 1916 |
+
},
|
| 1917 |
+
"255990": {
|
| 1918 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1919 |
+
"lstrip": false,
|
| 1920 |
+
"normalized": false,
|
| 1921 |
+
"rstrip": false,
|
| 1922 |
+
"single_word": false,
|
| 1923 |
+
"special": false
|
| 1924 |
+
},
|
| 1925 |
+
"255991": {
|
| 1926 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1927 |
+
"lstrip": false,
|
| 1928 |
+
"normalized": false,
|
| 1929 |
+
"rstrip": false,
|
| 1930 |
+
"single_word": false,
|
| 1931 |
+
"special": false
|
| 1932 |
+
},
|
| 1933 |
+
"255992": {
|
| 1934 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1935 |
+
"lstrip": false,
|
| 1936 |
+
"normalized": false,
|
| 1937 |
+
"rstrip": false,
|
| 1938 |
+
"single_word": false,
|
| 1939 |
+
"special": false
|
| 1940 |
+
},
|
| 1941 |
+
"255993": {
|
| 1942 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1943 |
+
"lstrip": false,
|
| 1944 |
+
"normalized": false,
|
| 1945 |
+
"rstrip": false,
|
| 1946 |
+
"single_word": false,
|
| 1947 |
+
"special": false
|
| 1948 |
+
},
|
| 1949 |
+
"255994": {
|
| 1950 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1951 |
+
"lstrip": false,
|
| 1952 |
+
"normalized": false,
|
| 1953 |
+
"rstrip": false,
|
| 1954 |
+
"single_word": false,
|
| 1955 |
+
"special": false
|
| 1956 |
+
},
|
| 1957 |
+
"255995": {
|
| 1958 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1959 |
+
"lstrip": false,
|
| 1960 |
+
"normalized": false,
|
| 1961 |
+
"rstrip": false,
|
| 1962 |
+
"single_word": false,
|
| 1963 |
+
"special": false
|
| 1964 |
+
},
|
| 1965 |
+
"255996": {
|
| 1966 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1967 |
+
"lstrip": false,
|
| 1968 |
+
"normalized": false,
|
| 1969 |
+
"rstrip": false,
|
| 1970 |
+
"single_word": false,
|
| 1971 |
+
"special": false
|
| 1972 |
+
},
|
| 1973 |
+
"255997": {
|
| 1974 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1975 |
+
"lstrip": false,
|
| 1976 |
+
"normalized": false,
|
| 1977 |
+
"rstrip": false,
|
| 1978 |
+
"single_word": false,
|
| 1979 |
+
"special": false
|
| 1980 |
+
},
|
| 1981 |
+
"255998": {
|
| 1982 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1983 |
+
"lstrip": false,
|
| 1984 |
+
"normalized": false,
|
| 1985 |
+
"rstrip": false,
|
| 1986 |
+
"single_word": false,
|
| 1987 |
+
"special": false
|
| 1988 |
+
},
|
| 1989 |
+
"255999": {
|
| 1990 |
+
"content": "<unused99>",
|
| 1991 |
+
"lstrip": false,
|
| 1992 |
+
"normalized": false,
|
| 1993 |
+
"rstrip": false,
|
| 1994 |
+
"single_word": false,
|
| 1995 |
+
"special": false
|
| 1996 |
+
}
|
| 1997 |
+
},
|
| 1998 |
+
"additional_special_tokens": [
|
| 1999 |
+
"<start_of_turn>",
|
| 2000 |
+
"<end_of_turn>"
|
| 2001 |
+
],
|
| 2002 |
+
"bos_token": "<bos>",
|
| 2003 |
+
"clean_up_tokenization_spaces": false,
|
| 2004 |
+
"eos_token": "<end_of_turn>",
|
| 2005 |
+
"extra_special_tokens": {},
|
| 2006 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 2007 |
+
"pad_token": "<pad>",
|
| 2008 |
+
"padding_side": "right",
|
| 2009 |
+
"sp_model_kwargs": {},
|
| 2010 |
+
"spaces_between_special_tokens": false,
|
| 2011 |
+
"split_special_tokens": false,
|
| 2012 |
+
"tokenizer_class": "GemmaTokenizerFast",
|
| 2013 |
+
"unk_token": "<unk>",
|
| 2014 |
+
"use_default_system_prompt": false
|
| 2015 |
+
}
|