File size: 33,264 Bytes
7667a87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 |
"""
Code is adapted from https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/models/diffusion/ddpm.py
"""
import warnings
from typing import Sequence, Union, Dict, Any, Optional, Callable
from copy import deepcopy
from contextlib import contextmanager
from functools import partial
from tqdm import tqdm
import torch
import torch.nn as nn
import numpy as np
from einops import rearrange
import lightning.pytorch as pl
from lightning.pytorch.utilities.rank_zero import rank_zero_only
from diffusers.models.autoencoder_kl import AutoencoderKLOutput, DecoderOutput
from .utils import make_beta_schedule, extract_into_tensor, noise_like, default
from models.model_utils.distributions import DiagonalGaussianDistribution
from utils.ema import LitEma
from utils.layout import parse_layout_shape
from utils.optim import disabled_train
class LatentDiffusion(pl.LightningModule):
def __init__(self,
torch_nn_module: nn.Module,
layout: str = "NTHWC",
data_shape: Sequence[int] = (10, 128, 128, 4),
timesteps=1000,
beta_schedule="linear",
loss_type="l2",
monitor="val/loss",
use_ema=True,
log_every_t=100,
clip_denoised=False,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
given_betas=None,
original_elbo_weight=0.,
v_posterior=0.,
l_simple_weight=1.,
parameterization="eps",
learn_logvar=False,
logvar_init=0.,
# latent diffusion
latent_shape: Sequence[int] = (10, 16, 16, 4),
first_stage_model: nn.Module = None,
cond_stage_model: Union[str, nn.Module] = None,
num_timesteps_cond=None,
cond_stage_trainable=False,
cond_stage_forward=None,
scale_by_std=False,
scale_factor=1.0,
):
r"""
Parameters
----------
torch_nn_module: nn.Module
The `.forward()` method of model should have the following signature:
`x_hat = model.forward(x, t, *args, **kwargs)`
layout: str
e.g., "NTHWC", "NHWC".
data_shape: Sequence[int]
The shape of each data entry. Corresponds to `layout` without the batch axis "N".
timesteps: int
1000 by default.
beta_schedule: str
one of ["linear", "cosine", "sqrt_linear", "sqrt"].
loss_type: str
one of ["l2", "l1"].
monitor: str
name of logged var for selecting best val model.
use_ema: bool
log_every_t: int
log intermediate denoising steps. Should be <= `timesteps`.
clip_denoised: bool
linear_start: float
linear_end: float
cosine_s: float
given_betas: Optional
If provided, `linear_start`, `linear_end`, `cosine_s` take no effect.
If None, `linear_start`, `linear_end`, `cosine_s` are used to generate betas via `make_beta_schedule()`.
original_elbo_weight: float
0. by default
v_posterior: float
0. by default
weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
l_simple_weight: float
1. by default
parameterization: str
"eps" by default, to predict the noise from `t` to `t-1`.
"x0" to predict the `x_{t-1}` from `x_t`.
all assuming fixed variance schedules.
learn_logvar: bool
use fixed var by default.
logvar_init: float
(initial) values of `logvar`.
latent_shape: Sequence[int]
The shape of downsampled data entry. Corresponds to `layout` without the batch axis "N".
first_stage_model: nn.Module
nn.Module : a model that has method ".encode()" to encode the inputs.
cond_stage_model: str or nn.Module
"__is_first_stage__": use the first_stage_model also for encoding conditionings.
nn.Module : a model that has method ".encode()" or use `self()` to encodes the conditionings.
cond_stage_trainable: bool
Whether to train the cond_stage_model jointly
num_timesteps_cond: int
cond_stage_forward: str
The name of the forward method of the cond_stage_model.
scale_by_std
scale_factor
"""
super(LatentDiffusion, self).__init__()
assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
self.parameterization = parameterization
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
self.clip_denoised = clip_denoised
self.log_every_t = log_every_t
self.torch_nn_module = torch_nn_module
self.layout = layout
self.data_shape = data_shape
self.parse_layout_shape(layout=layout)
self.use_ema = use_ema
if self.use_ema:
self.model_ema = LitEma(self.torch_nn_module)
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
self.v_posterior = v_posterior
self.original_elbo_weight = original_elbo_weight
self.l_simple_weight = l_simple_weight
if monitor is not None:
self.monitor = monitor
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
self.loss_type = loss_type
self.learn_logvar = learn_logvar
logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
if self.learn_logvar:
self.logvar = nn.Parameter(logvar, requires_grad=True)
else:
self.register_buffer('logvar', logvar)
self.latent_shape = latent_shape
self.num_timesteps_cond = default(num_timesteps_cond, 1)
assert self.num_timesteps_cond <= timesteps
self.shorten_cond_schedule = self.num_timesteps_cond > 1
if self.shorten_cond_schedule:
self.make_cond_schedule()
self.cond_stage_trainable = cond_stage_trainable
self.scale_by_std = scale_by_std
if not scale_by_std:
self.scale_factor = scale_factor
else:
self.register_buffer('scale_factor', torch.tensor(scale_factor))
self.instantiate_first_stage(first_stage_model)
self.instantiate_cond_stage(cond_stage_model, cond_stage_forward)
def set_alignment(self, alignment_fn: Callable = None):
r"""
Call this method to set alignment after __init__ of LatentDiffusion,
to avoid error "cannot assign module before Module.__init__() call"
when assigning alignment model to the LatentDiffusion before its __init__.
Parameters
----------
alignment_fn: Callable
Should have signature `alignment_fn(zt, t, zc=None, y=None, xt=None, **kwargs)`.
"""
self.alignment_fn = alignment_fn
def parse_layout_shape(self, layout):
parsed_dict = parse_layout_shape(layout=layout)
self.batch_axis = parsed_dict["batch_axis"]
self.t_axis = parsed_dict["t_axis"]
self.h_axis = parsed_dict["h_axis"]
self.w_axis = parsed_dict["w_axis"]
self.c_axis = parsed_dict["c_axis"]
self.all_slice = [slice(None, None), ] * len(layout)
def extract_into_tensor(self, a, t, x_shape):
return extract_into_tensor(a=a, t=t, x_shape=x_shape,
batch_axis=self.batch_axis)
@property
def loss_mean_dim(self):
# mean over all dims except for batch_axis.
if not hasattr(self, "_loss_mean_dim"):
_loss_mean_dim = list(range(len(self.layout)))
_loss_mean_dim.pop(self.batch_axis)
self._loss_mean_dim = tuple(_loss_mean_dim)
return self._loss_mean_dim
def get_batch_data_shape(self, batch_size=1):
if not hasattr(self, "batch_data_shape"): # `self.batch_data_shape` not set
_batch_data_shape = deepcopy(list(self.data_shape))
_batch_data_shape.insert(self.batch_axis, batch_size)
elif self.batch_data_shape[self.batch_axis] != batch_size: # `batch_size` is changed
_batch_data_shape = deepcopy(list(self.batch_data_shape))
_batch_data_shape[self.batch_axis] = batch_size
else:
return self.batch_data_shape
self.batch_data_shape = tuple(_batch_data_shape)
return self.batch_data_shape
def get_batch_latent_shape(self, batch_size=1):
if not hasattr(self, "batch_latent_shape"): # `self.batch_latent_shape` not set
_batch_latent_shape = deepcopy(list(self.latent_shape))
_batch_latent_shape.insert(self.batch_axis, batch_size)
elif self.batch_latent_shape[self.batch_axis] != batch_size: # `batch_size` is changed
_batch_latent_shape = deepcopy(list(self.batch_latent_shape))
_batch_latent_shape[self.batch_axis] = batch_size
else:
return self.batch_latent_shape
self.batch_latent_shape = tuple(_batch_latent_shape)
return self.batch_latent_shape
def register_schedule(self,
given_betas=None, beta_schedule="linear", timesteps=1000,
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
if given_betas is not None:
betas = given_betas
else:
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
cosine_s=cosine_s)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer('betas', to_torch(betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod) + self.v_posterior * betas
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer('posterior_variance', to_torch(posterior_variance))
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
self.register_buffer('posterior_mean_coef1', to_torch(
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
self.register_buffer('posterior_mean_coef2', to_torch(
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
if self.parameterization == "eps":
lvlb_weights = self.betas ** 2 / (2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
elif self.parameterization == "x0":
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
else:
raise NotImplementedError("mu not supported")
lvlb_weights[0] = lvlb_weights[1]
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
assert not torch.isnan(self.lvlb_weights).all()
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.torch_nn_module.parameters())
self.model_ema.copy_to(self.torch_nn_module)
if context is not None:
print(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.torch_nn_module.parameters())
if context is not None:
print(f"{context}: Restored training weights")
def make_cond_schedule(self, ):
cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
cond_ids[:self.num_timesteps_cond] = ids
self.register_buffer('cond_ids', cond_ids)
@rank_zero_only
@torch.no_grad()
def on_train_batch_start(self, batch, batch_idx):
# only for very first batch
# TODO: restarted_from_ckpt not configured
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
# set rescale weight to 1./std of encodings
print("### USING STD-RESCALING ###")
x, _ = self.get_input(batch)
x = x.to(self.device)
x = rearrange(x, f"{self.einops_layout} -> {self.einops_spatial_layout}")
z = self.encode_first_stage(x)
del self.scale_factor
self.register_buffer('scale_factor', 1. / z.flatten().std())
print(f"setting self.scale_factor to {self.scale_factor}")
print("### USING STD-RESCALING ###")
def instantiate_first_stage(self, first_stage_model):
if isinstance(first_stage_model, nn.Module):
model = first_stage_model
else:
assert first_stage_model is None
raise NotImplementedError("No default first_stage_model supported yet!")
self.first_stage_model = model.eval()
self.first_stage_model.train = disabled_train
for param in self.first_stage_model.parameters():
param.requires_grad = False
def instantiate_cond_stage(self, cond_stage_model, cond_stage_forward):
if cond_stage_model is None:
self.cond_stage_model = None
self.cond_stage_forward = None
return
is_first_stage_flag = cond_stage_model == "__is_first_stage__"
if cond_stage_model == "__is_first_stage__":
model = self.first_stage_model
if self.cond_stage_trainable:
warnings.warn("`cond_stage_trainable` is True while `cond_stage_model` is '__is_first_stage__'. "
"force `cond_stage_trainable` to be False")
self.cond_stage_trainable = False
elif isinstance(cond_stage_model, nn.Module):
model = cond_stage_model
else:
raise NotImplementedError
self.cond_stage_model = model
if (self.cond_stage_model is not None) and (not self.cond_stage_trainable):
for param in self.cond_stage_model.parameters():
param.requires_grad = False
if cond_stage_forward is None:
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
cond_stage_forward = self.cond_stage_model.encode
else:
cond_stage_forward = self.cond_stage_model.__call__
else:
assert hasattr(self.cond_stage_model, cond_stage_forward)
cond_stage_forward = getattr(self.cond_stage_model, cond_stage_forward)
def wrapper(cond_stage_forward: Callable, is_first_stage_flag=False):
def func(c: Dict[str, Any]):
if is_first_stage_flag:
# in this case, `cond_stage_model` is equivalent to `self.first_stage_model`,
# which takes `torch.Tensor` instead of `Dict` as input.
c = c.get("y") # get the conditioning tensor
batch_size = c.shape[self.batch_axis]
c = rearrange(c, f"{self.einops_layout} -> {self.einops_spatial_layout}")
c = cond_stage_forward(c)
if isinstance(c, DiagonalGaussianDistribution):
c = c.mode()
elif isinstance(c, AutoencoderKLOutput):
c = c.latent_dist.mode()
else:
pass
if is_first_stage_flag:
c = rearrange(c, f"{self.einops_spatial_layout} -> {self.einops_layout}", N=batch_size)
return c
return func
self.cond_stage_forward = wrapper(cond_stage_forward, is_first_stage_flag)
def get_first_stage_encoding(self, encoder_posterior):
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
z = encoder_posterior.sample()
elif isinstance(encoder_posterior, torch.Tensor):
z = encoder_posterior
elif isinstance(encoder_posterior, AutoencoderKLOutput):
z = encoder_posterior.latent_dist.sample()
else:
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
return self.scale_factor * z
@property
def einops_layout(self):
return " ".join(self.layout)
@property
def einops_spatial_layout(self):
if not hasattr(self, "_einops_spatial_layout"):
assert len(self.layout) == 4 or len(self.layout) == 5
self._einops_spatial_layout = "(N T) C H W" if self.layout.find("T") else "N C H W"
return self._einops_spatial_layout
@torch.no_grad()
def get_input(self, batch, **kwargs):
r"""
dataset dependent
re-implement it for each specific dataset
Parameters
----------
batch: Any
raw data batch from specific dataloader
Returns
-------
out: Sequence[torch.Tensor, Dict[str, Any]]
out[0] should be a torch.Tensor which is the target to generate
out[1] should be a dict consists of several key-value pairs for conditioning
"""
return batch
@torch.no_grad()
def decode_first_stage(self, z):
z = 1. / self.scale_factor * z
batch_size = z.shape[self.batch_axis]
z = rearrange(z, f"{self.einops_layout} -> {self.einops_spatial_layout}")
output = self.first_stage_model.decode(z)
if isinstance(output, DecoderOutput):
output = output.sample
output = rearrange(output, f"{self.einops_spatial_layout} -> {self.einops_layout}", N=batch_size)
return output
@torch.no_grad()
def encode_first_stage(self, x):
encoder_posterior = self.first_stage_model.encode(x)
output = self.get_first_stage_encoding(encoder_posterior).detach()
return output
def apply_model(self, x_noisy, t, cond):
x_recon = self.torch_nn_module(x_noisy, t, cond)
if isinstance(x_recon, tuple):
return x_recon[0]
else:
return x_recon
def forward(self, batch, verbose=False):
x, c = self.get_input(batch) # torch.Tensor, Dict[str, Any]
if verbose:
print("inputs:")
print(f"x.shape = {x.shape}")
for key, val in c.items():
if hasattr(val, "shape"):
print(f"{key}.shape = {val.shape}")
batch_size = x.shape[self.batch_axis]
x = x.to(self.device)
x = rearrange(x, f"{self.einops_layout} -> {self.einops_spatial_layout}")
z = self.encode_first_stage(x)
if verbose:
print("after first stage:")
print(f"z.shape = {z.shape}")
# xrec = self.decode_first_stage(z)
z = rearrange(z, f"{self.einops_spatial_layout} -> {self.einops_layout}", N=batch_size)
t = torch.randint(0, self.num_timesteps, (batch_size,), device=self.device).long()
if self.cond_stage_model is not None:
assert c is not None
zc = self.cond_stage_forward(c)
if self.shorten_cond_schedule: # TODO: drop this option
tc = self.cond_ids[t]
zc = self.q_sample(x_start=zc, t=tc, noise=torch.randn_like(c.float()))
if verbose and hasattr(zc, "shape"):
print(f"zc.shape = {zc.shape}")
else:
zc = c if isinstance(c, torch.Tensor) else c.get("y", None)
return self.p_losses(z, zc, t, noise=None)
def training_step(self, batch, batch_idx):
loss, loss_dict = self(batch)
self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True)
return loss
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.model_ema(self.torch_nn_module)
@torch.no_grad()
def validation_step(self, batch, batch_idx):
_, loss_dict_no_ema = self(batch)
with self.ema_scope():
_, loss_dict_ema = self(batch)
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (self.extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
self.extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
def get_loss(self, pred, target, mean=True):
if self.loss_type == 'l1':
loss = (target - pred).abs()
if mean:
loss = loss.mean()
elif self.loss_type == 'l2':
if mean:
loss = torch.nn.functional.mse_loss(target, pred)
else:
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
else:
raise NotImplementedError("unknown loss type '{loss_type}'")
return loss
def p_losses(self, x_start, cond, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
model_output = self.apply_model(x_noisy, t, cond)
loss_dict = {}
prefix = 'train' if self.training else 'val'
# TODO: add v-prediction
if self.parameterization == "x0":
target = x_start
elif self.parameterization == "eps":
target = noise
else:
raise NotImplementedError()
loss_simple = self.get_loss(model_output, target, mean=False).mean(dim=self.loss_mean_dim)
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
logvar_t = self.logvar[t]
loss = loss_simple / torch.exp(logvar_t) + logvar_t
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
if self.learn_logvar:
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
loss_dict.update({'logvar': self.logvar.data.mean()})
loss = self.l_simple_weight * loss.mean()
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=self.loss_mean_dim)
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
loss += (self.original_elbo_weight * loss_vlb)
loss_dict.update({f'{prefix}/loss': loss})
return loss, loss_dict
def predict_start_from_noise(self, x_t, t, noise):
return (
self.extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
self.extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
self.extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
self.extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = self.extract_into_tensor(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = self.extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, zt, zc, t, clip_denoised: bool,
return_x0=False, score_corrector=None, corrector_kwargs=None):
t_in = t
model_out = self.apply_model(zt, t_in, zc)
if score_corrector is not None:
assert self.parameterization == "eps"
model_out = score_corrector.modify_score(self, model_out, zt, t, zc, **corrector_kwargs)
if self.parameterization == "eps":
z_recon = self.predict_start_from_noise(zt, t=t, noise=model_out)
elif self.parameterization == "x0":
z_recon = model_out
else:
raise NotImplementedError()
if clip_denoised:
z_recon.clamp_(-1., 1.)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=z_recon, x_t=zt, t=t)
if return_x0:
return model_mean, posterior_variance, posterior_log_variance, z_recon
else:
return model_mean, posterior_variance, posterior_log_variance
def aligned_mean(self, zt, t, zc, y,
orig_mean, orig_log_var, **kwargs):
align_gradient = self.alignment_fn(zt, t, zc=zc, y=y, **kwargs)
new_mean = orig_mean - (0.5 * orig_log_var).exp() * align_gradient
return new_mean
@torch.no_grad()
def p_sample(self, zt, zc, t, y=None, use_alignment=False, alignment_kwargs=None,
clip_denoised=False, return_x0=False,
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
batch_size = zt.shape[self.batch_axis]
device = zt.device
outputs = self.p_mean_variance(zt=zt, zc=zc, t=t, clip_denoised=clip_denoised,
return_x0=return_x0,
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
if use_alignment:
if alignment_kwargs is None:
alignment_kwargs = {}
model_mean, posterior_variance, model_log_variance, *_ = outputs
model_mean = self.aligned_mean(zt=zt, t=t, zc=zc, y=y,
orig_mean=model_mean, orig_log_var=model_log_variance,
**alignment_kwargs)
outputs = (model_mean, posterior_variance, model_log_variance, *outputs[3:])
if return_x0:
model_mean, _, model_log_variance, x0 = outputs
else:
model_mean, _, model_log_variance = outputs
noise = noise_like(zt.shape, device) * temperature
if noise_dropout > 0.:
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
# no noise when t == 0
nonzero_mask_shape = [1, ] * len(zt.shape)
nonzero_mask_shape[self.batch_axis] = batch_size
nonzero_mask = (1 - (t == 0).float()).reshape(*nonzero_mask_shape)
if return_x0:
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
else:
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def p_sample_loop(self, cond, shape, y=None,
use_alignment=False, alignment_kwargs=None,
return_intermediates=False, x_T=None,
verbose=False, callback=None, timesteps=None,
mask=None, x0=None, img_callback=None, start_T=None,
log_every_t=None):
if not log_every_t:
log_every_t = self.log_every_t
device = self.betas.device
batch_size = shape[self.batch_axis]
if x_T is None:
img = torch.randn(shape, device=device)
else:
img = x_T
intermediates = [img]
if timesteps is None:
timesteps = self.num_timesteps
if start_T is not None:
timesteps = min(timesteps, start_T)
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) \
if verbose else reversed(range(0, timesteps))
if mask is not None:
assert x0 is not None
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
for i in iterator:
ts = torch.full((batch_size,), i, device=device, dtype=torch.long)
if self.shorten_cond_schedule:
tc = self.cond_ids[ts].to(cond.device)
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
img = self.p_sample(zt=img, zc=cond, t=ts, y=y,
use_alignment=use_alignment,
alignment_kwargs=alignment_kwargs,
clip_denoised=self.clip_denoised, )
if mask is not None:
img_orig = self.q_sample(x0, ts)
img = img_orig * mask + (1. - mask) * img
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(img)
if callback: callback(i)
if img_callback: img_callback(img, i)
if return_intermediates:
return img, intermediates
return img
@torch.no_grad()
def sample(self, cond, batch_size=16,
use_alignment=False, alignment_kwargs=None,
return_intermediates=False, x_T=None,
verbose=False, timesteps=None,
mask=None, x0=None, shape=None, return_decoded=True, **kwargs):
if use_alignment:
assert self.alignment_fn is not None, "Alignment function not set."
if shape is None:
shape = self.get_batch_latent_shape(batch_size=batch_size)
if self.cond_stage_model is not None:
assert cond is not None
cond_tensor_slice = [slice(None, None), ] * len(self.data_shape)
cond_tensor_slice[self.batch_axis] = slice(0, batch_size)
if isinstance(cond, dict):
zc = {key: cond[key][cond_tensor_slice] if not isinstance(cond[key], list) else
list(map(lambda x: x[cond_tensor_slice], cond[key])) for key in cond}
else:
zc = [c[cond_tensor_slice] for c in cond] if isinstance(cond, list) else cond[cond_tensor_slice]
zc = self.cond_stage_forward(zc)
else:
zc = cond if isinstance(cond, torch.Tensor) else cond.get("y", None)
y = cond if isinstance(cond, torch.Tensor) else cond.get("y", None)
output = self.p_sample_loop(
cond=zc, shape=shape, y=y,
use_alignment=use_alignment, alignment_kwargs=alignment_kwargs,
return_intermediates=return_intermediates, x_T=x_T,
verbose=verbose, timesteps=timesteps,
mask=mask, x0=x0)
if return_decoded:
if return_intermediates:
samples, intermediates = output
decoded_samples = self.decode_first_stage(samples)
decoded_intermediates = [self.decode_first_stage(ele) for ele in intermediates]
output = [decoded_samples, decoded_intermediates]
else:
output = self.decode_first_stage(output)
return output
def configure_optimizers(self):
lr = self.learning_rate
params = list(self.torch_nn_module.parameters())
if self.cond_stage_trainable:
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
params = params + list(self.cond_stage_model.parameters())
if self.learn_logvar:
print('Diffusion model optimizing logvar')
params.append(self.logvar)
opt = torch.optim.AdamW(params, lr=lr)
return opt
|