File size: 22,377 Bytes
7667a87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 |
import torch
from torch.optim.lr_scheduler import LambdaLR, CosineAnnealingLR, SequentialLR
from lightning.pytorch.profilers import PyTorchProfiler
from lightning.pytorch.callbacks import (
Callback, LearningRateMonitor, DeviceStatsMonitor,
EarlyStopping, ModelCheckpoint,
)
from lightning.pytorch import Trainer, loggers as pl_loggers
from lightning.pytorch.strategies import DDPStrategy
from lightning.pytorch.utilities import grad_norm
import torchmetrics
import numpy as np
from omegaconf import OmegaConf
import os
import warnings
from shutil import copyfile
import inspect
from models.knowledge_alignment import AlignmentPL,SEVIRAvgIntensityAlignment
from models.vae import AutoencoderKL
from datamodule import SEVIRLightningDataModule
from utils.path import default_pretrained_vae_dir,default_exps_dir
from utils.optim import warmup_lambda
from utils.layout import step_layout_to_in_out_slice
class SEVIRAlignmentPLModule(AlignmentPL):
def __init__(
self,
total_num_steps: int,
oc_file: str = None,
save_dir: str = None
):
self.total_num_steps = total_num_steps
oc_from_file = OmegaConf.load(open(oc_file, "r")) if oc_file is not None else oc_file
oc = self.get_base_config(oc_from_file=oc_from_file)
self.save_hyperparameters(oc)
self.oc = oc
knowledge_alignment_cfg = OmegaConf.to_object(oc.model.align)
self.alignment_obj = SEVIRAvgIntensityAlignment(
alignment_type=knowledge_alignment_cfg["alignment_type"],
model_type=knowledge_alignment_cfg["model_type"],
model_args=knowledge_alignment_cfg["model_args"]
)
vae_cfg = OmegaConf.to_object(oc.model.vae)
first_stage_model = AutoencoderKL(
down_block_types=vae_cfg["down_block_types"],
in_channels=vae_cfg["in_channels"],
block_out_channels=vae_cfg["block_out_channels"],
act_fn=vae_cfg["act_fn"],
latent_channels=vae_cfg["latent_channels"],
up_block_types=vae_cfg["up_block_types"],
norm_num_groups=vae_cfg["norm_num_groups"],
layers_per_block=vae_cfg["layers_per_block"],
out_channels=vae_cfg["out_channels"]
)
pretrained_ckpt_path = vae_cfg["pretrained_ckpt_path"]
if pretrained_ckpt_path is not None:
state_dict = torch.load(
os.path.join(default_pretrained_vae_dir, vae_cfg["pretrained_ckpt_path"]),
map_location=torch.device("cpu")
)
first_stage_model.load_state_dict(state_dict=state_dict)
else:
warnings.warn(f"Pretrained weights for `AutoencoderKL` not set. Run for sanity check only.")
diffusion_cfg = OmegaConf.to_object(oc.model.diffusion)
super(SEVIRAlignmentPLModule, self).__init__(
torch_nn_module=self.alignment_obj.model,
target_fn=self.alignment_obj.model_objective,
layout=oc.layout.layout,
timesteps=diffusion_cfg["timesteps"],
beta_schedule=diffusion_cfg["beta_schedule"],
loss_type=self.oc.optim.loss_type,
monitor=self.oc.optim.monitor,
linear_start=diffusion_cfg["linear_start"],
linear_end=diffusion_cfg["linear_end"],
cosine_s=diffusion_cfg["cosine_s"],
given_betas=diffusion_cfg["given_betas"],
# latent diffusion
first_stage_model=first_stage_model,
cond_stage_model=diffusion_cfg["cond_stage_model"],
num_timesteps_cond=diffusion_cfg["num_timesteps_cond"],
cond_stage_trainable=diffusion_cfg["cond_stage_trainable"],
cond_stage_forward=diffusion_cfg["cond_stage_forward"],
scale_by_std=diffusion_cfg["scale_by_std"],
scale_factor=diffusion_cfg["scale_factor"],)
# lr_scheduler
self.total_num_steps = total_num_steps
# logging
self.save_dir = save_dir
self.logging_prefix = oc.logging.logging_prefix
self.valid_mse = torchmetrics.MeanSquaredError()
self.valid_mae = torchmetrics.MeanAbsoluteError()
self.test_mse = torchmetrics.MeanSquaredError()
self.test_mae = torchmetrics.MeanAbsoluteError()
self.configure_save(cfg_file_path=oc_file)
def configure_save(self, cfg_file_path=None):
self.save_dir = os.path.join(default_exps_dir, self.save_dir)
os.makedirs(self.save_dir, exist_ok=True)
if cfg_file_path is not None:
cfg_file_target_path = os.path.join(self.save_dir, "cfg.yaml")
if (not os.path.exists(cfg_file_target_path)) or \
(not os.path.samefile(cfg_file_path, cfg_file_target_path)):
copyfile(cfg_file_path, cfg_file_target_path)
self.example_save_dir = os.path.join(self.save_dir, "examples")
os.makedirs(self.example_save_dir, exist_ok=True)
# region Get Default Config
def get_base_config(self, oc_from_file=None):
oc = OmegaConf.create()
oc.layout = self.get_layout_config()
oc.optim = self.get_optim_config()
oc.logging = self.get_logging_config()
oc.trainer = self.get_trainer_config()
oc.eval = self.get_eval_config()
oc.model = self.get_model_config()
oc.dataset = self.get_dataset_config()
if oc_from_file is not None:
# oc = apply_omegaconf_overrides(oc, oc_from_file)
oc = OmegaConf.merge(oc, oc_from_file)
return oc
@staticmethod
def get_layout_config():
cfg = OmegaConf.create()
cfg.in_len = 7
cfg.out_len = 6
cfg.in_step=1
cfg.out_step=1
cfg.in_out_diff=1
cfg.img_height = 128
cfg.img_width = 128
cfg.data_channels = 4
cfg.layout = "NTHWC"
return cfg
@staticmethod
def get_model_config():
cfg = OmegaConf.create()
layout_cfg = SEVIRAlignmentPLModule.get_layout_config()
cfg.diffusion = OmegaConf.create()
cfg.diffusion.timesteps = 1000
cfg.diffusion.beta_schedule = "linear"
cfg.diffusion.linear_start = 1e-4
cfg.diffusion.linear_end = 2e-2
cfg.diffusion.cosine_s = 8e-3
cfg.diffusion.given_betas = None
# latent diffusion
cfg.diffusion.cond_stage_model = "__is_first_stage__"
cfg.diffusion.num_timesteps_cond = None
cfg.diffusion.cond_stage_trainable = False
cfg.diffusion.cond_stage_forward = None
cfg.diffusion.scale_by_std = False
cfg.diffusion.scale_factor = 1.0
cfg.align = OmegaConf.create()
cfg.align.alignment_type = "avg_x"
cfg.align.model_type = "cuboid"
cfg.align.model_args = OmegaConf.create()
cfg.align.model_args.input_shape = [6, 16, 16, 4]
cfg.align.model_args.out_channels = 2
cfg.align.model_args.base_units = 16
cfg.align.model_args.block_units = None
cfg.align.model_args.scale_alpha = 1.0
cfg.align.model_args.depth = [1, 1]
cfg.align.model_args.downsample = 2
cfg.align.model_args.downsample_type = "patch_merge"
cfg.align.model_args.block_attn_patterns = "axial"
cfg.align.model_args.num_heads = 4
cfg.align.model_args.attn_drop = 0.0
cfg.align.model_args.proj_drop = 0.0
cfg.align.model_args.ffn_drop = 0.0
cfg.align.model_args.ffn_activation = "gelu"
cfg.align.model_args.gated_ffn = False
cfg.align.model_args.norm_layer = "layer_norm"
cfg.align.model_args.use_inter_ffn = True
cfg.align.model_args.hierarchical_pos_embed = False
cfg.align.model_args.pos_embed_type = 't+h+w'
cfg.align.model_args.padding_type = "zero"
cfg.align.model_args.checkpoint_level = 0
cfg.align.model_args.use_relative_pos = True
cfg.align.model_args.self_attn_use_final_proj = True
# global vectors
cfg.align.model_args.num_global_vectors = 0
cfg.align.model_args.use_global_vector_ffn = True
cfg.align.model_args.use_global_self_attn = False
cfg.align.model_args.separate_global_qkv = False
cfg.align.model_args.global_dim_ratio = 1
# initialization
cfg.align.model_args.attn_linear_init_mode = "0"
cfg.align.model_args.ffn_linear_init_mode = "0"
cfg.align.model_args.ffn2_linear_init_mode = "2"
cfg.align.model_args.attn_proj_linear_init_mode = "2"
cfg.align.model_args.conv_init_mode = "0"
cfg.align.model_args.down_linear_init_mode = "0"
cfg.align.model_args.global_proj_linear_init_mode = "2"
cfg.align.model_args.norm_init_mode = "0"
# timestep embedding for diffusion
cfg.align.model_args.time_embed_channels_mult = 4
cfg.align.model_args.time_embed_use_scale_shift_norm = False
cfg.align.model_args.time_embed_dropout = 0.0
# readout
cfg.align.model_args.pool = "attention"
cfg.align.model_args.readout_seq = True
cfg.align.model_args.out_len = 6
cfg.vae = OmegaConf.create()
cfg.vae.data_channels = layout_cfg.data_channels
# from stable-diffusion-v1-5
cfg.vae.down_block_types = ['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D']
cfg.vae.in_channels = cfg.vae.data_channels
cfg.vae.block_out_channels = [128, 256, 512, 512]
cfg.vae.act_fn = 'silu'
cfg.vae.latent_channels = 4
cfg.vae.up_block_types = ['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D']
cfg.vae.norm_num_groups = 32
cfg.vae.layers_per_block = 2
cfg.vae.out_channels = cfg.vae.data_channels
return cfg
@staticmethod
def get_dataset_config():
cfg = OmegaConf.create()
cfg.dataset_name = "sevir_lr"
cfg.img_height = 128
cfg.img_width = 128
cfg.in_len = 7
cfg.out_len = 6
cfg.in_step=1
cfg.out_step=1
cfg.in_out_diff=1
cfg.seq_len = 13
cfg.plot_stride = 1
cfg.interval_real_time = 10
cfg.sample_mode = "sequent"
cfg.stride = cfg.out_len
cfg.layout = "NTHWC"
cfg.start_date = None
cfg.train_val_split_date = (2019, 1, 1)
cfg.train_test_split_date = (2019, 6, 1)
cfg.end_date = None
cfg.metrics_mode = "0"
cfg.metrics_list = ('csi', 'pod', 'sucr', 'bias')
cfg.threshold_list = (16, 74, 133, 160, 181, 219)
cfg.aug_mode = "1"
return cfg
@staticmethod
def get_optim_config():
cfg = OmegaConf.create()
cfg.seed = None
cfg.total_batch_size = 32
cfg.micro_batch_size = 8
cfg.float32_matmul_precision = "high"
cfg.method = "adamw"
cfg.lr = 1.0E-6
cfg.wd = 1.0E-2
cfg.betas = (0.9, 0.999)
cfg.gradient_clip_val = 1.0
cfg.max_epochs = 50
cfg.loss_type = "l2"
# scheduler
cfg.warmup_percentage = 0.2
cfg.lr_scheduler_mode = "cosine" # Can be strings like 'linear', 'cosine'
cfg.min_lr_ratio = 1.0E-3
cfg.warmup_min_lr_ratio = 0.0
# early stopping
cfg.monitor = "valid_loss_epoch"
cfg.early_stop = False
cfg.early_stop_mode = "min"
cfg.early_stop_patience = 5
cfg.save_top_k = 1
return cfg
@staticmethod
def get_logging_config():
cfg = OmegaConf.create()
cfg.logging_prefix = "SEVIR-LR_AvgX"
cfg.monitor_lr = True
cfg.monitor_device = False
cfg.track_grad_norm = -1
cfg.use_wandb = False
cfg.profiler = None
return cfg
@staticmethod
def get_trainer_config():
cfg = OmegaConf.create()
cfg.check_val_every_n_epoch = 1
cfg.log_step_ratio = 0.001 # Logging every 1% of the total training steps per epoch
cfg.precision = 32
cfg.find_unused_parameters = True
cfg.num_sanity_val_steps = 2
return cfg
@staticmethod
def get_eval_config():
cfg = OmegaConf.create()
cfg.train_example_data_idx_list = []
cfg.val_example_data_idx_list = []
cfg.test_example_data_idx_list = []
cfg.eval_example_only = False
cfg.num_samples_per_context = 1
cfg.save_gif = False
cfg.gif_fps = 2.0
return cfg
# endregion
# region Trainer and Optimizer Config
def configure_optimizers(self):
optim_cfg = self.oc.optim
params = list(self.torch_nn_module.parameters())
if self.cond_stage_trainable:
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
params = params + list(self.cond_stage_model.parameters())
if optim_cfg.method == "adamw":
optimizer = torch.optim.AdamW(params, lr=optim_cfg.lr, betas=optim_cfg.betas)
else:
raise NotImplementedError(f"opimization method {optim_cfg.method} not supported.")
warmup_iter = int(np.round(self.oc.optim.warmup_percentage * self.total_num_steps))
if optim_cfg.lr_scheduler_mode == 'none':
return {'optimizer': optimizer}
else:
if optim_cfg.lr_scheduler_mode == 'cosine':
warmup_scheduler = LambdaLR(optimizer,
lr_lambda=warmup_lambda(warmup_steps=warmup_iter,
min_lr_ratio=optim_cfg.warmup_min_lr_ratio))
cosine_scheduler = CosineAnnealingLR(optimizer,
T_max=(self.total_num_steps - warmup_iter),
eta_min=optim_cfg.min_lr_ratio * optim_cfg.lr)
lr_scheduler = SequentialLR(optimizer, schedulers=[warmup_scheduler, cosine_scheduler],
milestones=[warmup_iter])
lr_scheduler_config = {
'scheduler': lr_scheduler,
'interval': 'step',
'frequency': 1,
}
else:
raise NotImplementedError
return {'optimizer': optimizer, 'lr_scheduler': lr_scheduler_config}
def set_trainer_kwargs(self, **kwargs):
r"""
Default kwargs used when initializing pl.Trainer
"""
if self.oc.logging.profiler is None:
profiler = None
elif self.oc.logging.profiler == "pytorch":
profiler = PyTorchProfiler(filename=f"{self.oc.logging.logging_prefix}_PyTorchProfiler.log")
else:
raise NotImplementedError
checkpoint_callback = ModelCheckpoint(
monitor=self.oc.optim.monitor,
dirpath=os.path.join(self.save_dir, "checkpoints"),
filename="{epoch:03d}",
auto_insert_metric_name=False,
save_top_k=self.oc.optim.save_top_k,
save_last=True,
mode="min",
)
callbacks = kwargs.pop("callbacks", [])
assert isinstance(callbacks, list)
for ele in callbacks:
assert isinstance(ele, Callback)
callbacks += [checkpoint_callback, ]
if self.oc.logging.monitor_lr:
callbacks += [LearningRateMonitor(logging_interval='step'), ]
if self.oc.logging.monitor_device:
callbacks += [DeviceStatsMonitor(), ]
if self.oc.optim.early_stop:
callbacks += [EarlyStopping(monitor=self.oc.optim.monitor,
min_delta=0.0,
patience=self.oc.optim.early_stop_patience,
verbose=False,
mode=self.oc.optim.early_stop_mode), ]
logger = kwargs.pop("logger", [])
tb_logger = pl_loggers.TensorBoardLogger(save_dir=self.save_dir)
csv_logger = pl_loggers.CSVLogger(save_dir=self.save_dir)
logger += [tb_logger, csv_logger]
if self.oc.logging.use_wandb:
wandb_logger = pl_loggers.WandbLogger(
name = self.oc.logging.logging_name,
id = self.oc.logging.run_id,
project=self.oc.logging.logging_prefix,
save_dir=self.save_dir
)
logger += [wandb_logger, ]
log_every_n_steps = max(1, int(self.oc.trainer.log_step_ratio * self.total_num_steps))
trainer_init_keys = inspect.signature(Trainer).parameters.keys()
ret = dict(
callbacks=callbacks,
# log
logger=logger,
log_every_n_steps=log_every_n_steps,
profiler=profiler,
# save
default_root_dir=self.save_dir,
# ddp
accelerator="gpu",
strategy=DDPStrategy(find_unused_parameters=self.oc.trainer.find_unused_parameters),
# strategy=ApexDDPStrategy(find_unused_parameters=False, delay_allreduce=True),
# optimization
max_epochs=self.oc.optim.max_epochs,
check_val_every_n_epoch=self.oc.trainer.check_val_every_n_epoch,
gradient_clip_val=self.oc.optim.gradient_clip_val,
# NVIDIA amp
precision=self.oc.trainer.precision,
# misc
num_sanity_val_steps=self.oc.trainer.num_sanity_val_steps,
inference_mode=False,
)
oc_trainer_kwargs = OmegaConf.to_object(self.oc.trainer)
oc_trainer_kwargs = {key: val for key, val in oc_trainer_kwargs.items() if key in trainer_init_keys}
ret.update(oc_trainer_kwargs)
ret.update(kwargs)
return ret
# endregion
# region Properties Extraction and Misc Calc
@classmethod
def get_total_num_steps(
cls,
num_samples: int,
total_batch_size: int,
epoch: int = None):
r"""
Parameters
----------
num_samples: int
The number of samples of the datasets. `num_samples / micro_batch_size` is the number of steps per epoch.
total_batch_size: int
`total_batch_size == micro_batch_size * world_size * grad_accum`
"""
if epoch is None:
epoch = cls.get_optim_config().max_epochs
return int(epoch * num_samples / total_batch_size)
@staticmethod
def get_sevir_datamodule(dataset_cfg,
micro_batch_size: int = 1,
num_workers: int = 8):
dm = SEVIRLightningDataModule(
seq_len=dataset_cfg["seq_len"],
sample_mode=dataset_cfg["sample_mode"],
stride=dataset_cfg["stride"],
batch_size=micro_batch_size,
layout=dataset_cfg["layout"],
output_type=np.float32,
preprocess=True,
rescale_method="01",
verbose=False,
aug_mode=dataset_cfg["aug_mode"],
ret_contiguous=False,
# datamodule_only
dataset_name=dataset_cfg["dataset_name"],
start_date=dataset_cfg["start_date"],
train_test_split_date=dataset_cfg["train_test_split_date"],
end_date=dataset_cfg["end_date"],
val_ratio=dataset_cfg["val_ratio"],
num_workers=num_workers, )
return dm
@property
def in_slice(self):
if not hasattr(self, "_in_slice"):
in_slice, out_slice = step_layout_to_in_out_slice(
layout=self.oc.layout.layout,
in_len=self.oc.layout.in_len, in_step= self.oc.layout.in_step,
out_len=self.oc.layout.out_len, out_step = self.oc.layout.out_step,
in_out_diff= self.oc.layout.in_out_diff
)
self._in_slice = in_slice
self._out_slice = out_slice
return self._in_slice
@property
def out_slice(self):
if not hasattr(self, "_out_slice"):
in_slice, out_slice = step_layout_to_in_out_slice(
layout=self.oc.layout.layout,
in_len=self.oc.layout.in_len, in_step= self.oc.layout.in_step,
out_len=self.oc.layout.out_len, out_step = self.oc.layout.out_step,
in_out_diff= self.oc.layout.in_out_diff
)
self._in_slice = in_slice
self._out_slice = out_slice
return self._out_slice
@property
def intensity_avg_dims(self):
if not hasattr(self, "_intensity_avg_dims"):
self._intensity_avg_dims = tuple(self.oc.layout.layout.find(dim) for dim in "HWC")
return self._intensity_avg_dims
@torch.no_grad()
def get_input(self, batch, **kwargs):
r"""
dataset dependent
re-implement it for each specific dataset
Parameters
----------
batch: Any
raw data batch from specific dataloader
Returns
-------
out: Sequence[torch.Tensor, Dict[str, Any]]
out[0] should be a torch.Tensor which is the target to generate
out[1] should be a dict consists of several key-value pairs for conditioning
"""
return self._get_input_sevirlr(batch=batch, return_verbose=kwargs.get("return_verbose", False))
@torch.no_grad()
def _get_input_sevirlr(self, batch, return_verbose=False):
seq = batch
in_seq = seq[self.in_slice]
out_seq = seq[self.out_slice]
if return_verbose:
return out_seq, {"y": in_seq}, \
{"avg_x_gt": torch.mean(out_seq, dim=self.intensity_avg_dims)}
else:
return out_seq, {"y": in_seq}, {}
def on_before_optimizer_step(self, optimizer):
# Compute the 2-norm for each layer
# If using mixed precision, the gradients are already unscaled here
# reference: https://lightning.ai/docs/pytorch/2.0.9/debug/debugging_intermediate.html#look-out-for-exploding-gradients
if self.oc.logging.track_grad_norm != -1:
norms = grad_norm(self.torch_nn_module, norm_type=self.oc.logging.track_grad_norm)
self.log_dict(norms)
# endregion |