File size: 22,377 Bytes
7667a87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
import torch
from torch.optim.lr_scheduler import LambdaLR, CosineAnnealingLR, SequentialLR
from lightning.pytorch.profilers import PyTorchProfiler
from lightning.pytorch.callbacks import (
    Callback, LearningRateMonitor, DeviceStatsMonitor,
    EarlyStopping, ModelCheckpoint, 
)
from lightning.pytorch import Trainer, loggers as pl_loggers
from lightning.pytorch.strategies import DDPStrategy
from lightning.pytorch.utilities import grad_norm
import torchmetrics
import numpy as np

from omegaconf import OmegaConf
import os
import warnings
from shutil import copyfile
import inspect

from models.knowledge_alignment import AlignmentPL,SEVIRAvgIntensityAlignment
from models.vae import AutoencoderKL
from datamodule import SEVIRLightningDataModule
from utils.path import default_pretrained_vae_dir,default_exps_dir
from utils.optim import warmup_lambda
from utils.layout import step_layout_to_in_out_slice

class SEVIRAlignmentPLModule(AlignmentPL):
    def __init__(
        self,
        total_num_steps: int,
        oc_file: str = None,
        save_dir: str = None
    ):
        self.total_num_steps = total_num_steps
        oc_from_file = OmegaConf.load(open(oc_file, "r")) if oc_file is not None else oc_file
        oc = self.get_base_config(oc_from_file=oc_from_file)
        self.save_hyperparameters(oc)
        self.oc = oc

        knowledge_alignment_cfg = OmegaConf.to_object(oc.model.align)
        self.alignment_obj = SEVIRAvgIntensityAlignment(
            alignment_type=knowledge_alignment_cfg["alignment_type"],
            model_type=knowledge_alignment_cfg["model_type"],
            model_args=knowledge_alignment_cfg["model_args"]
        )

        vae_cfg = OmegaConf.to_object(oc.model.vae)
        first_stage_model = AutoencoderKL(
            down_block_types=vae_cfg["down_block_types"],
            in_channels=vae_cfg["in_channels"],
            block_out_channels=vae_cfg["block_out_channels"],
            act_fn=vae_cfg["act_fn"],
            latent_channels=vae_cfg["latent_channels"],
            up_block_types=vae_cfg["up_block_types"],
            norm_num_groups=vae_cfg["norm_num_groups"],
            layers_per_block=vae_cfg["layers_per_block"],
            out_channels=vae_cfg["out_channels"]
        )
        pretrained_ckpt_path = vae_cfg["pretrained_ckpt_path"]
        if pretrained_ckpt_path is not None:
            state_dict = torch.load(
                os.path.join(default_pretrained_vae_dir, vae_cfg["pretrained_ckpt_path"]),
                map_location=torch.device("cpu")
            )
            first_stage_model.load_state_dict(state_dict=state_dict)
        else:
            warnings.warn(f"Pretrained weights for `AutoencoderKL` not set. Run for sanity check only.")

        diffusion_cfg = OmegaConf.to_object(oc.model.diffusion)
        super(SEVIRAlignmentPLModule, self).__init__(
            torch_nn_module=self.alignment_obj.model,
            target_fn=self.alignment_obj.model_objective,
            layout=oc.layout.layout,
            timesteps=diffusion_cfg["timesteps"],
            beta_schedule=diffusion_cfg["beta_schedule"],
            loss_type=self.oc.optim.loss_type,
            monitor=self.oc.optim.monitor,
            linear_start=diffusion_cfg["linear_start"],
            linear_end=diffusion_cfg["linear_end"],
            cosine_s=diffusion_cfg["cosine_s"],
            given_betas=diffusion_cfg["given_betas"],
            # latent diffusion
            first_stage_model=first_stage_model,
            cond_stage_model=diffusion_cfg["cond_stage_model"],
            num_timesteps_cond=diffusion_cfg["num_timesteps_cond"],
            cond_stage_trainable=diffusion_cfg["cond_stage_trainable"],
            cond_stage_forward=diffusion_cfg["cond_stage_forward"],
            scale_by_std=diffusion_cfg["scale_by_std"],
            scale_factor=diffusion_cfg["scale_factor"],)
        # lr_scheduler
        self.total_num_steps = total_num_steps
        # logging
        self.save_dir = save_dir
        self.logging_prefix = oc.logging.logging_prefix

        self.valid_mse = torchmetrics.MeanSquaredError()
        self.valid_mae = torchmetrics.MeanAbsoluteError()
        self.test_mse = torchmetrics.MeanSquaredError()
        self.test_mae = torchmetrics.MeanAbsoluteError()

        self.configure_save(cfg_file_path=oc_file)

    def configure_save(self, cfg_file_path=None):
        self.save_dir = os.path.join(default_exps_dir, self.save_dir)
        os.makedirs(self.save_dir, exist_ok=True)
        if cfg_file_path is not None:
            cfg_file_target_path = os.path.join(self.save_dir, "cfg.yaml")
            if (not os.path.exists(cfg_file_target_path)) or \
                    (not os.path.samefile(cfg_file_path, cfg_file_target_path)):
                copyfile(cfg_file_path, cfg_file_target_path)
        self.example_save_dir = os.path.join(self.save_dir, "examples")
        os.makedirs(self.example_save_dir, exist_ok=True)
    # region Get Default Config
    def get_base_config(self, oc_from_file=None):
        oc = OmegaConf.create()
        oc.layout = self.get_layout_config()
        oc.optim = self.get_optim_config()
        oc.logging = self.get_logging_config()
        oc.trainer = self.get_trainer_config()
        oc.eval = self.get_eval_config()
        oc.model = self.get_model_config()
        oc.dataset = self.get_dataset_config()
        if oc_from_file is not None:
            # oc = apply_omegaconf_overrides(oc, oc_from_file)
            oc = OmegaConf.merge(oc, oc_from_file)
        return oc

    @staticmethod
    def get_layout_config():
        cfg = OmegaConf.create()
        cfg.in_len = 7
        cfg.out_len = 6
        cfg.in_step=1
        cfg.out_step=1
        cfg.in_out_diff=1
        
        cfg.img_height = 128
        cfg.img_width = 128
        cfg.data_channels = 4
        cfg.layout = "NTHWC"
        return cfg

    @staticmethod
    def get_model_config():
        cfg = OmegaConf.create()
        layout_cfg = SEVIRAlignmentPLModule.get_layout_config()
        
        cfg.diffusion = OmegaConf.create()
        cfg.diffusion.timesteps = 1000
        cfg.diffusion.beta_schedule = "linear"
        cfg.diffusion.linear_start = 1e-4
        cfg.diffusion.linear_end = 2e-2
        cfg.diffusion.cosine_s = 8e-3
        cfg.diffusion.given_betas = None
        # latent diffusion
        cfg.diffusion.cond_stage_model = "__is_first_stage__"
        cfg.diffusion.num_timesteps_cond = None
        cfg.diffusion.cond_stage_trainable = False
        cfg.diffusion.cond_stage_forward = None
        cfg.diffusion.scale_by_std = False
        cfg.diffusion.scale_factor = 1.0

        cfg.align = OmegaConf.create()
        cfg.align.alignment_type = "avg_x"
        cfg.align.model_type = "cuboid"
        cfg.align.model_args = OmegaConf.create()
        cfg.align.model_args.input_shape = [6, 16, 16, 4]
        cfg.align.model_args.out_channels = 2
        cfg.align.model_args.base_units = 16
        cfg.align.model_args.block_units = None
        cfg.align.model_args.scale_alpha = 1.0
        cfg.align.model_args.depth = [1, 1]
        cfg.align.model_args.downsample = 2
        cfg.align.model_args.downsample_type = "patch_merge"
        cfg.align.model_args.block_attn_patterns = "axial"
        cfg.align.model_args.num_heads = 4
        cfg.align.model_args.attn_drop = 0.0
        cfg.align.model_args.proj_drop = 0.0
        cfg.align.model_args.ffn_drop = 0.0
        cfg.align.model_args.ffn_activation = "gelu"
        cfg.align.model_args.gated_ffn = False
        cfg.align.model_args.norm_layer = "layer_norm"
        cfg.align.model_args.use_inter_ffn = True
        cfg.align.model_args.hierarchical_pos_embed = False
        cfg.align.model_args.pos_embed_type = 't+h+w'
        cfg.align.model_args.padding_type = "zero"
        cfg.align.model_args.checkpoint_level = 0
        cfg.align.model_args.use_relative_pos = True
        cfg.align.model_args.self_attn_use_final_proj = True
        # global vectors
        cfg.align.model_args.num_global_vectors = 0
        cfg.align.model_args.use_global_vector_ffn = True
        cfg.align.model_args.use_global_self_attn = False
        cfg.align.model_args.separate_global_qkv = False
        cfg.align.model_args.global_dim_ratio = 1
        # initialization
        cfg.align.model_args.attn_linear_init_mode = "0"
        cfg.align.model_args.ffn_linear_init_mode = "0"
        cfg.align.model_args.ffn2_linear_init_mode = "2"
        cfg.align.model_args.attn_proj_linear_init_mode = "2"
        cfg.align.model_args.conv_init_mode = "0"
        cfg.align.model_args.down_linear_init_mode = "0"
        cfg.align.model_args.global_proj_linear_init_mode = "2"
        cfg.align.model_args.norm_init_mode = "0"
        # timestep embedding for diffusion
        cfg.align.model_args.time_embed_channels_mult = 4
        cfg.align.model_args.time_embed_use_scale_shift_norm = False
        cfg.align.model_args.time_embed_dropout = 0.0
        # readout
        cfg.align.model_args.pool = "attention"
        cfg.align.model_args.readout_seq = True
        cfg.align.model_args.out_len = 6

        cfg.vae = OmegaConf.create()
        cfg.vae.data_channels = layout_cfg.data_channels
        # from stable-diffusion-v1-5
        cfg.vae.down_block_types = ['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D']
        cfg.vae.in_channels = cfg.vae.data_channels
        cfg.vae.block_out_channels = [128, 256, 512, 512]
        cfg.vae.act_fn = 'silu'
        cfg.vae.latent_channels = 4
        cfg.vae.up_block_types = ['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D']
        cfg.vae.norm_num_groups = 32
        cfg.vae.layers_per_block = 2
        cfg.vae.out_channels = cfg.vae.data_channels
        return cfg

    @staticmethod
    def get_dataset_config():
        cfg = OmegaConf.create()
        cfg.dataset_name = "sevir_lr"
        cfg.img_height = 128
        cfg.img_width = 128
        cfg.in_len = 7
        cfg.out_len = 6
        cfg.in_step=1
        cfg.out_step=1
        cfg.in_out_diff=1
        cfg.seq_len = 13
        cfg.plot_stride = 1
        cfg.interval_real_time = 10
        cfg.sample_mode = "sequent"
        cfg.stride = cfg.out_len
        cfg.layout = "NTHWC"
        cfg.start_date = None
        cfg.train_val_split_date = (2019, 1, 1)
        cfg.train_test_split_date = (2019, 6, 1)
        cfg.end_date = None
        cfg.metrics_mode = "0"
        cfg.metrics_list = ('csi', 'pod', 'sucr', 'bias')
        cfg.threshold_list = (16, 74, 133, 160, 181, 219)
        cfg.aug_mode = "1"
        return cfg

    @staticmethod
    def get_optim_config():
        cfg = OmegaConf.create()
        cfg.seed = None
        cfg.total_batch_size = 32
        cfg.micro_batch_size = 8
        cfg.float32_matmul_precision = "high"

        cfg.method = "adamw"
        cfg.lr = 1.0E-6
        cfg.wd = 1.0E-2
        cfg.betas = (0.9, 0.999)
        cfg.gradient_clip_val = 1.0
        cfg.max_epochs = 50
        cfg.loss_type = "l2"
        # scheduler
        cfg.warmup_percentage = 0.2
        cfg.lr_scheduler_mode = "cosine"  # Can be strings like 'linear', 'cosine'
        cfg.min_lr_ratio = 1.0E-3
        cfg.warmup_min_lr_ratio = 0.0
        # early stopping
        cfg.monitor = "valid_loss_epoch"
        cfg.early_stop = False
        cfg.early_stop_mode = "min"
        cfg.early_stop_patience = 5
        cfg.save_top_k = 1
        return cfg

    @staticmethod
    def get_logging_config():
        cfg = OmegaConf.create()
        cfg.logging_prefix = "SEVIR-LR_AvgX"
        cfg.monitor_lr = True
        cfg.monitor_device = False
        cfg.track_grad_norm = -1
        cfg.use_wandb = False
        cfg.profiler = None
        return cfg

    @staticmethod
    def get_trainer_config():
        cfg = OmegaConf.create()
        cfg.check_val_every_n_epoch = 1
        cfg.log_step_ratio = 0.001  # Logging every 1% of the total training steps per epoch
        cfg.precision = 32
        cfg.find_unused_parameters = True
        cfg.num_sanity_val_steps = 2
        return cfg

    @staticmethod
    def get_eval_config():
        cfg = OmegaConf.create()
        cfg.train_example_data_idx_list = []
        cfg.val_example_data_idx_list = []
        cfg.test_example_data_idx_list = []
        cfg.eval_example_only = False
        cfg.num_samples_per_context = 1
        cfg.save_gif = False
        cfg.gif_fps = 2.0
        return cfg
    # endregion
    
    # region Trainer and Optimizer Config
    def configure_optimizers(self):
        optim_cfg = self.oc.optim
        params = list(self.torch_nn_module.parameters())
        if self.cond_stage_trainable:
            print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
            params = params + list(self.cond_stage_model.parameters())

        if optim_cfg.method == "adamw":
            optimizer = torch.optim.AdamW(params, lr=optim_cfg.lr, betas=optim_cfg.betas)
        else:
            raise NotImplementedError(f"opimization method {optim_cfg.method} not supported.")

        warmup_iter = int(np.round(self.oc.optim.warmup_percentage * self.total_num_steps))
        if optim_cfg.lr_scheduler_mode == 'none':
            return {'optimizer': optimizer}
        else:
            if optim_cfg.lr_scheduler_mode == 'cosine':
                warmup_scheduler = LambdaLR(optimizer,
                                            lr_lambda=warmup_lambda(warmup_steps=warmup_iter,
                                                                    min_lr_ratio=optim_cfg.warmup_min_lr_ratio))
                cosine_scheduler = CosineAnnealingLR(optimizer,
                                                     T_max=(self.total_num_steps - warmup_iter),
                                                     eta_min=optim_cfg.min_lr_ratio * optim_cfg.lr)
                lr_scheduler = SequentialLR(optimizer, schedulers=[warmup_scheduler, cosine_scheduler],
                                            milestones=[warmup_iter])
                lr_scheduler_config = {
                    'scheduler': lr_scheduler,
                    'interval': 'step',
                    'frequency': 1,
                }
            else:
                raise NotImplementedError
            return {'optimizer': optimizer, 'lr_scheduler': lr_scheduler_config}

    def set_trainer_kwargs(self, **kwargs):
        r"""
        Default kwargs used when initializing pl.Trainer
        """
        if self.oc.logging.profiler is None:
            profiler = None
        elif self.oc.logging.profiler == "pytorch":
            profiler = PyTorchProfiler(filename=f"{self.oc.logging.logging_prefix}_PyTorchProfiler.log")
        else:
            raise NotImplementedError
        checkpoint_callback = ModelCheckpoint(
            monitor=self.oc.optim.monitor,
            dirpath=os.path.join(self.save_dir, "checkpoints"),
            filename="{epoch:03d}",
            auto_insert_metric_name=False,
            save_top_k=self.oc.optim.save_top_k,
            save_last=True,
            mode="min",
        )
        callbacks = kwargs.pop("callbacks", [])
        assert isinstance(callbacks, list)
        for ele in callbacks:
            assert isinstance(ele, Callback)
        callbacks += [checkpoint_callback, ]
        if self.oc.logging.monitor_lr:
            callbacks += [LearningRateMonitor(logging_interval='step'), ]
        if self.oc.logging.monitor_device:
            callbacks += [DeviceStatsMonitor(), ]
        if self.oc.optim.early_stop:
            callbacks += [EarlyStopping(monitor=self.oc.optim.monitor,
                                        min_delta=0.0,
                                        patience=self.oc.optim.early_stop_patience,
                                        verbose=False,
                                        mode=self.oc.optim.early_stop_mode), ]

        logger = kwargs.pop("logger", [])
        tb_logger = pl_loggers.TensorBoardLogger(save_dir=self.save_dir)
        csv_logger = pl_loggers.CSVLogger(save_dir=self.save_dir)
        logger += [tb_logger, csv_logger]
        if self.oc.logging.use_wandb:
            wandb_logger = pl_loggers.WandbLogger(
                name = self.oc.logging.logging_name,
                id = self.oc.logging.run_id,
                project=self.oc.logging.logging_prefix,
                save_dir=self.save_dir
            )
            logger += [wandb_logger, ]

        log_every_n_steps = max(1, int(self.oc.trainer.log_step_ratio * self.total_num_steps))
        trainer_init_keys = inspect.signature(Trainer).parameters.keys()
        ret = dict(
            callbacks=callbacks,
            # log
            logger=logger,
            log_every_n_steps=log_every_n_steps,
            profiler=profiler,
            # save
            default_root_dir=self.save_dir,
            # ddp
            accelerator="gpu",
            strategy=DDPStrategy(find_unused_parameters=self.oc.trainer.find_unused_parameters),
            # strategy=ApexDDPStrategy(find_unused_parameters=False, delay_allreduce=True),
            # optimization
            max_epochs=self.oc.optim.max_epochs,
            check_val_every_n_epoch=self.oc.trainer.check_val_every_n_epoch,
            gradient_clip_val=self.oc.optim.gradient_clip_val,
            # NVIDIA amp
            precision=self.oc.trainer.precision,
            # misc
            num_sanity_val_steps=self.oc.trainer.num_sanity_val_steps,
            inference_mode=False,
        )
        oc_trainer_kwargs = OmegaConf.to_object(self.oc.trainer)
        oc_trainer_kwargs = {key: val for key, val in oc_trainer_kwargs.items() if key in trainer_init_keys}
        ret.update(oc_trainer_kwargs)
        ret.update(kwargs)
        return ret
    # endregion
    
    # region Properties Extraction and Misc Calc
    @classmethod
    def get_total_num_steps(
            cls,
            num_samples: int,
            total_batch_size: int,
            epoch: int = None):
        r"""
        Parameters
        ----------
        num_samples:    int
            The number of samples of the datasets. `num_samples / micro_batch_size` is the number of steps per epoch.
        total_batch_size:   int
            `total_batch_size == micro_batch_size * world_size * grad_accum`
        """
        if epoch is None:
            epoch = cls.get_optim_config().max_epochs
        return int(epoch * num_samples / total_batch_size)

    @staticmethod
    def get_sevir_datamodule(dataset_cfg,
                             micro_batch_size: int = 1,
                             num_workers: int = 8):
        dm = SEVIRLightningDataModule(
            seq_len=dataset_cfg["seq_len"],
            sample_mode=dataset_cfg["sample_mode"],
            stride=dataset_cfg["stride"],
            batch_size=micro_batch_size,
            layout=dataset_cfg["layout"],
            output_type=np.float32,
            preprocess=True,
            rescale_method="01",
            verbose=False,
            aug_mode=dataset_cfg["aug_mode"],
            ret_contiguous=False,
            # datamodule_only
            dataset_name=dataset_cfg["dataset_name"],
            start_date=dataset_cfg["start_date"],
            train_test_split_date=dataset_cfg["train_test_split_date"],
            end_date=dataset_cfg["end_date"],
            val_ratio=dataset_cfg["val_ratio"],
            num_workers=num_workers, )
        return dm

    @property
    def in_slice(self):
        if not hasattr(self, "_in_slice"):
            in_slice, out_slice = step_layout_to_in_out_slice(
                layout=self.oc.layout.layout,
                in_len=self.oc.layout.in_len, in_step= self.oc.layout.in_step,
                out_len=self.oc.layout.out_len, out_step = self.oc.layout.out_step,
                in_out_diff= self.oc.layout.in_out_diff
            )
            self._in_slice = in_slice
            self._out_slice = out_slice
        return self._in_slice

    @property
    def out_slice(self):
        if not hasattr(self, "_out_slice"):
            in_slice, out_slice = step_layout_to_in_out_slice(
                layout=self.oc.layout.layout,
                in_len=self.oc.layout.in_len, in_step= self.oc.layout.in_step,
                out_len=self.oc.layout.out_len, out_step = self.oc.layout.out_step,
                in_out_diff= self.oc.layout.in_out_diff
            )
            self._in_slice = in_slice
            self._out_slice = out_slice
        return self._out_slice

    @property
    def intensity_avg_dims(self):
        if not hasattr(self, "_intensity_avg_dims"):
            self._intensity_avg_dims = tuple(self.oc.layout.layout.find(dim) for dim in "HWC")
        return self._intensity_avg_dims

    @torch.no_grad()
    def get_input(self, batch, **kwargs):
        r"""
        dataset dependent
        re-implement it for each specific dataset

        Parameters
        ----------
        batch:  Any
            raw data batch from specific dataloader

        Returns
        -------
        out:    Sequence[torch.Tensor, Dict[str, Any]]
            out[0] should be a torch.Tensor which is the target to generate
            out[1] should be a dict consists of several key-value pairs for conditioning
        """
        return self._get_input_sevirlr(batch=batch, return_verbose=kwargs.get("return_verbose", False))

    @torch.no_grad()
    def _get_input_sevirlr(self, batch, return_verbose=False):
        seq = batch
        in_seq = seq[self.in_slice]
        out_seq = seq[self.out_slice]
        if return_verbose:
            return out_seq, {"y": in_seq}, \
                   {"avg_x_gt": torch.mean(out_seq, dim=self.intensity_avg_dims)}
        else:
            return out_seq, {"y": in_seq}, {}

    def on_before_optimizer_step(self, optimizer):
        # Compute the 2-norm for each layer
        # If using mixed precision, the gradients are already unscaled here
        # reference: https://lightning.ai/docs/pytorch/2.0.9/debug/debugging_intermediate.html#look-out-for-exploding-gradients
        if self.oc.logging.track_grad_norm != -1:
            norms = grad_norm(self.torch_nn_module, norm_type=self.oc.logging.track_grad_norm)
            self.log_dict(norms)
    # endregion