File size: 51,624 Bytes
7667a87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
from omegaconf import OmegaConf
import os
from shutil import copyfile
import warnings
from typing import Dict,Sequence,Union
import inspect

import numpy as np
import torch
from torch.optim.lr_scheduler import LambdaLR, CosineAnnealingLR, SequentialLR
import torchmetrics
from lightning.pytorch import Trainer, loggers as pl_loggers
from lightning.pytorch.profilers import PyTorchProfiler
from lightning.pytorch.strategies import DDPStrategy
from lightning.pytorch.callbacks import (
    Callback, LearningRateMonitor, DeviceStatsMonitor,
    EarlyStopping, ModelCheckpoint
)
from lightning.pytorch.utilities import grad_norm
from einops import rearrange

from models.vae import AutoencoderKL
from models.knowledge_alignment import SEVIRAvgIntensityAlignment,get_alignment_kwargs_avg_x
from models.diffusion import LatentDiffusion
from models.core_model.cuboid_transformer import CuboidTransformerUNet
from datamodule import SEVIRLightningDataModule,vis_sevir_seq
from utils.path import (
    default_exps_dir,
    default_pretrained_vae_dir,default_pretrained_alignment_dir
)
from utils.optim import disable_train,warmup_lambda
from utils.layout import step_layout_to_in_out_slice
from evaluation import FrechetVideoDistance,SEVIRSkillScore


class PreDiffSEVIRPLModule(LatentDiffusion):
    def __init__(self,
                 total_num_steps: int,
                 oc_file: str = None,
                 save_dir: str = None):
        self.total_num_steps = total_num_steps
        if oc_file is not None:
            oc_from_file = OmegaConf.load(open(oc_file, "r"))
        else:
            oc_from_file = None
        oc = self.get_base_config(oc_from_file=oc_from_file)
        self.save_hyperparameters(oc)
        self.oc = oc

        latent_model_cfg = OmegaConf.to_object(oc.model.latent_model)
        num_blocks = len(latent_model_cfg["depth"])
        if isinstance(latent_model_cfg["self_pattern"], str):
            block_attn_patterns = [latent_model_cfg["self_pattern"]] * num_blocks
        else:
            block_attn_patterns = OmegaConf.to_container(latent_model_cfg["self_pattern"])
        latent_model = CuboidTransformerUNet(
            input_shape=latent_model_cfg["input_shape"],
            target_shape=latent_model_cfg["target_shape"],
            base_units=latent_model_cfg["base_units"],
            scale_alpha=latent_model_cfg["scale_alpha"],
            num_heads=latent_model_cfg["num_heads"],
            attn_drop=latent_model_cfg["attn_drop"],
            proj_drop=latent_model_cfg["proj_drop"],
            ffn_drop=latent_model_cfg["ffn_drop"],
            # inter-attn downsample/upsample
            downsample=latent_model_cfg["downsample"],
            downsample_type=latent_model_cfg["downsample_type"],
            upsample_type=latent_model_cfg["upsample_type"],
            upsample_kernel_size=latent_model_cfg["upsample_kernel_size"],
            # attention
            depth=latent_model_cfg["depth"],
            block_attn_patterns=block_attn_patterns,
            # global vectors
            num_global_vectors=latent_model_cfg["num_global_vectors"],
            use_global_vector_ffn=latent_model_cfg["use_global_vector_ffn"],
            use_global_self_attn=latent_model_cfg["use_global_self_attn"],
            separate_global_qkv=latent_model_cfg["separate_global_qkv"],
            global_dim_ratio=latent_model_cfg["global_dim_ratio"],
            # misc
            ffn_activation=latent_model_cfg["ffn_activation"],
            gated_ffn=latent_model_cfg["gated_ffn"],
            norm_layer=latent_model_cfg["norm_layer"],
            padding_type=latent_model_cfg["padding_type"],
            checkpoint_level=latent_model_cfg["checkpoint_level"],
            pos_embed_type=latent_model_cfg["pos_embed_type"],
            use_relative_pos=latent_model_cfg["use_relative_pos"],
            self_attn_use_final_proj=latent_model_cfg["self_attn_use_final_proj"],
            # initialization
            attn_linear_init_mode=latent_model_cfg["attn_linear_init_mode"],
            ffn_linear_init_mode=latent_model_cfg["ffn_linear_init_mode"],
            ffn2_linear_init_mode=latent_model_cfg["ffn2_linear_init_mode"],
            attn_proj_linear_init_mode=latent_model_cfg["attn_proj_linear_init_mode"],
            conv_init_mode=latent_model_cfg["conv_init_mode"],
            down_linear_init_mode=latent_model_cfg["down_up_linear_init_mode"],
            up_linear_init_mode=latent_model_cfg["down_up_linear_init_mode"],
            global_proj_linear_init_mode=latent_model_cfg["global_proj_linear_init_mode"],
            norm_init_mode=latent_model_cfg["norm_init_mode"],
            # timestep embedding for diffusion
            time_embed_channels_mult=latent_model_cfg["time_embed_channels_mult"],
            time_embed_use_scale_shift_norm=latent_model_cfg["time_embed_use_scale_shift_norm"],
            time_embed_dropout=latent_model_cfg["time_embed_dropout"],
            unet_res_connect=latent_model_cfg["unet_res_connect"]
        )

        vae_cfg = OmegaConf.to_object(oc.model.vae)
        first_stage_model = AutoencoderKL(
            down_block_types=vae_cfg["down_block_types"],
            in_channels=vae_cfg["in_channels"],
            block_out_channels=vae_cfg["block_out_channels"],
            act_fn=vae_cfg["act_fn"],
            latent_channels=vae_cfg["latent_channels"],
            up_block_types=vae_cfg["up_block_types"],
            norm_num_groups=vae_cfg["norm_num_groups"],
            layers_per_block=vae_cfg["layers_per_block"],
            out_channels=vae_cfg["out_channels"], )
        pretrained_ckpt_path = vae_cfg["pretrained_ckpt_path"]
        if pretrained_ckpt_path is not None:
            state_dict = torch.load(os.path.join(default_pretrained_vae_dir, vae_cfg["pretrained_ckpt_path"]),
                                    map_location=torch.device("cpu"))
            first_stage_model.load_state_dict(state_dict=state_dict)
        else:
            warnings.warn(f"Pretrained weights for `AutoencoderKL` not set. Run for sanity check only.")

        diffusion_cfg = OmegaConf.to_object(oc.model.diffusion)
        super(PreDiffSEVIRPLModule, self).__init__(
            torch_nn_module=latent_model,
            layout=oc.layout.layout,
            data_shape=diffusion_cfg["data_shape"],
            timesteps=diffusion_cfg["timesteps"],
            beta_schedule=diffusion_cfg["beta_schedule"],
            loss_type=self.oc.optim.loss_type,
            monitor=self.oc.optim.monitor,
            use_ema=diffusion_cfg["use_ema"],
            log_every_t=diffusion_cfg["log_every_t"],
            clip_denoised=diffusion_cfg["clip_denoised"],
            linear_start=diffusion_cfg["linear_start"],
            linear_end=diffusion_cfg["linear_end"],
            cosine_s=diffusion_cfg["cosine_s"],
            given_betas=diffusion_cfg["given_betas"],
            original_elbo_weight=diffusion_cfg["original_elbo_weight"],
            v_posterior=diffusion_cfg["v_posterior"],
            l_simple_weight=diffusion_cfg["l_simple_weight"],
            parameterization=diffusion_cfg["parameterization"],
            learn_logvar=diffusion_cfg["learn_logvar"],
            logvar_init=diffusion_cfg["logvar_init"],
            # latent diffusion
            latent_shape=diffusion_cfg["latent_shape"],
            first_stage_model=first_stage_model,
            cond_stage_model=diffusion_cfg["cond_stage_model"],
            num_timesteps_cond=diffusion_cfg["num_timesteps_cond"],
            cond_stage_trainable=diffusion_cfg["cond_stage_trainable"],
            cond_stage_forward=diffusion_cfg["cond_stage_forward"],
            scale_by_std=diffusion_cfg["scale_by_std"],
            scale_factor=diffusion_cfg["scale_factor"], )
        # knowledge alignment
        knowledge_alignment_cfg = OmegaConf.to_object(oc.model.align)
        self.alignment_type = knowledge_alignment_cfg["alignment_type"]
        self.use_alignment = self.alignment_type is not None
        if self.use_alignment:
            alignment_ckpt_path = os.path.join(default_pretrained_alignment_dir, knowledge_alignment_cfg["model_ckpt_path"])
            self.alignment_obj = SEVIRAvgIntensityAlignment(
                alignment_type=knowledge_alignment_cfg["alignment_type"],
                guide_scale=knowledge_alignment_cfg["guide_scale"],
                model_type=knowledge_alignment_cfg["model_type"],
                model_args=knowledge_alignment_cfg["model_args"],
                model_ckpt_path=alignment_ckpt_path
            )
            disable_train(self.alignment_obj.model)
            self.alignment_model = self.alignment_obj.model
            alignment_fn = self.alignment_obj.get_mean_shift
        else:
            alignment_fn = None
        self.set_alignment(alignment_fn=alignment_fn)
        # lr_scheduler
        self.total_num_steps = total_num_steps
        # logging
        self.save_dir = save_dir
        self.logging_prefix = oc.logging.logging_prefix
        # visualization
        self.train_example_data_idx_list = list(oc.eval.train_example_data_idx_list)
        self.val_example_data_idx_list = list(oc.eval.val_example_data_idx_list)
        self.test_example_data_idx_list = list(oc.eval.test_example_data_idx_list)
        self.eval_example_only = oc.eval.eval_example_only

        if self.oc.eval.eval_unaligned:
            self.valid_mse = torchmetrics.MeanSquaredError()
            self.valid_mae = torchmetrics.MeanAbsoluteError()
            self.valid_score = SEVIRSkillScore(
                mode=self.oc.dataset.metrics_mode,
                seq_len=self.oc.layout.out_len,
                layout=self.layout,
                threshold_list=self.oc.dataset.threshold_list,
                metrics_list=self.oc.dataset.metrics_list,
                eps=1e-4
            )
            self.test_mse = torchmetrics.MeanSquaredError()
            self.test_mae = torchmetrics.MeanAbsoluteError()
            self.test_ssim = torchmetrics.image.StructuralSimilarityIndexMeasure()
            self.test_score = SEVIRSkillScore(
                mode=self.oc.dataset.metrics_mode,
                seq_len=self.oc.layout.out_len,
                layout=self.layout,
                threshold_list=self.oc.dataset.threshold_list,
                metrics_list=self.oc.dataset.metrics_list,
                eps=1e-4
            )
            self.test_fvd = FrechetVideoDistance(
                feature=self.oc.eval.fvd_features,
                layout=self.layout,
                reset_real_features=False,
                normalize=False,
                auto_t=True, )
        if self.oc.eval.eval_aligned:
            self.valid_aligned_mse = torchmetrics.MeanSquaredError()
            self.valid_aligned_mae = torchmetrics.MeanAbsoluteError()
            self.valid_aligned_score = SEVIRSkillScore(
                mode=self.oc.dataset.metrics_mode,
                seq_len=self.oc.layout.out_len,
                layout=self.layout,
                threshold_list=self.oc.dataset.threshold_list,
                metrics_list=self.oc.dataset.metrics_list,
                eps=1e-4, )
            self.test_aligned_mse = torchmetrics.MeanSquaredError()
            self.test_aligned_mae = torchmetrics.MeanAbsoluteError()
            self.test_aligned_ssim = torchmetrics.image.StructuralSimilarityIndexMeasure()
            self.test_aligned_score = SEVIRSkillScore(
                mode=self.oc.dataset.metrics_mode,
                seq_len=self.oc.layout.out_len,
                layout=self.layout,
                threshold_list=self.oc.dataset.threshold_list,
                metrics_list=self.oc.dataset.metrics_list,
                eps=1e-4, )
            self.test_aligned_fvd = FrechetVideoDistance(
                feature=self.oc.eval.fvd_features,
                layout=self.layout,
                reset_real_features=False,
                normalize=False,
                auto_t=True, )

        self.configure_save(cfg_file_path=oc_file)

    def configure_save(self, cfg_file_path=None):
        self.save_dir = os.path.join(default_exps_dir, self.save_dir)
        os.makedirs(self.save_dir, exist_ok=True)
        if cfg_file_path is not None:
            cfg_file_target_path = os.path.join(self.save_dir, "cfg.yaml")
            if (not os.path.exists(cfg_file_target_path)) or \
                    (not os.path.samefile(cfg_file_path, cfg_file_target_path)):
                copyfile(cfg_file_path, cfg_file_target_path)
        self.example_save_dir = os.path.join(self.save_dir, "examples")
        os.makedirs(self.example_save_dir, exist_ok=True)
        self.npy_save_dir = os.path.join(self.save_dir, "npy")
        os.makedirs(self.npy_save_dir, exist_ok=True)

    # region Get Default Config
    def get_base_config(self, oc_from_file=None):
        oc = OmegaConf.create()
        oc.layout = self.get_layout_config()
        oc.optim = self.get_optim_config()
        oc.logging = self.get_logging_config()
        oc.trainer = self.get_trainer_config()
        oc.eval = self.get_eval_config()
        oc.model = self.get_model_config()
        oc.dataset = self.get_dataset_config()
        if oc_from_file is not None:
            # oc = apply_omegaconf_overrides(oc, oc_from_file)
            oc = OmegaConf.merge(oc, oc_from_file)
        return oc

    @staticmethod
    def get_layout_config():
        cfg = OmegaConf.create()
        cfg.in_len = 7
        cfg.out_len = 6
        cfg.in_step=1
        cfg.out_step=1
        cfg.in_out_diff=1
        
        cfg.img_height = 128
        cfg.img_width = 128
        cfg.data_channels = 4
        cfg.layout = "NTHWC"
        return cfg

    @staticmethod
    def get_model_config():
        cfg = OmegaConf.create()
        layout_cfg = PreDiffSEVIRPLModule.get_layout_config()

        cfg.diffusion = OmegaConf.create()
        cfg.diffusion.data_shape = (layout_cfg.out_len,
                                    layout_cfg.img_height,
                                    layout_cfg.img_width,
                                    layout_cfg.data_channels)
        cfg.diffusion.timesteps = 1000
        cfg.diffusion.beta_schedule = "linear"
        cfg.diffusion.use_ema = True
        cfg.diffusion.log_every_t = 100  # log every `log_every_t` timesteps. Must be smaller than `timesteps`.
        cfg.diffusion.clip_denoised = False
        cfg.diffusion.linear_start = 1e-4
        cfg.diffusion.linear_end = 2e-2
        cfg.diffusion.cosine_s = 8e-3
        cfg.diffusion.given_betas = None
        cfg.diffusion.original_elbo_weight = 0.
        cfg.diffusion.v_posterior = 0.
        cfg.diffusion.l_simple_weight = 1.
        cfg.diffusion.parameterization = "eps"
        cfg.diffusion.learn_logvar = None
        cfg.diffusion.logvar_init = 0.
        # latent diffusion
        cfg.diffusion.latent_shape = [10, 16, 16, 4]
        cfg.diffusion.cond_stage_model = "__is_first_stage__"
        cfg.diffusion.num_timesteps_cond = None
        cfg.diffusion.cond_stage_trainable = False
        cfg.diffusion.cond_stage_forward = None
        cfg.diffusion.scale_by_std = False
        cfg.diffusion.scale_factor = 1.0
        cfg.diffusion.latent_cond_shape = [10, 16, 16, 4]
        # knowledge alignment
        cfg.align = OmegaConf.create()
        cfg.align.alignment_type = None
        cfg.align.guide_scale = 1.0
        cfg.align.model_type = "cuboid"
        cfg.align.model_ckpt_path = "tmp.pt"
        cfg.align.model_args = OmegaConf.create()
        # Earthformer
        cfg.align.model_args.input_shape = [6, 16, 16, 4]
        cfg.align.model_args.out_channels = 2
        cfg.align.model_args.base_units = 16
        cfg.align.model_args.block_units = None
        cfg.align.model_args.scale_alpha = 1.0
        cfg.align.model_args.depth = [1, 1]
        cfg.align.model_args.downsample = 2
        cfg.align.model_args.downsample_type = "patch_merge"
        cfg.align.model_args.block_attn_patterns = "axial"
        cfg.align.model_args.num_heads = 4
        cfg.align.model_args.attn_drop = 0.0
        cfg.align.model_args.proj_drop = 0.0
        cfg.align.model_args.ffn_drop = 0.0
        cfg.align.model_args.ffn_activation = "gelu"
        cfg.align.model_args.gated_ffn = False
        cfg.align.model_args.norm_layer = "layer_norm"
        cfg.align.model_args.use_inter_ffn = True
        cfg.align.model_args.hierarchical_pos_embed = False
        cfg.align.model_args.pos_embed_type = 't+h+w'
        cfg.align.model_args.padding_type = "zero"
        cfg.align.model_args.checkpoint_level = 0
        cfg.align.model_args.use_relative_pos = True
        cfg.align.model_args.self_attn_use_final_proj = True
        # global vectors
        cfg.align.model_args.num_global_vectors = 0
        cfg.align.model_args.use_global_vector_ffn = True
        cfg.align.model_args.use_global_self_attn = False
        cfg.align.model_args.separate_global_qkv = False
        cfg.align.model_args.global_dim_ratio = 1
        # initialization
        cfg.align.model_args.attn_linear_init_mode = "0"
        cfg.align.model_args.ffn_linear_init_mode = "0"
        cfg.align.model_args.ffn2_linear_init_mode = "2"
        cfg.align.model_args.attn_proj_linear_init_mode = "2"
        cfg.align.model_args.conv_init_mode = "0"
        cfg.align.model_args.down_linear_init_mode = "0"
        cfg.align.model_args.global_proj_linear_init_mode = "2"
        cfg.align.model_args.norm_init_mode = "0"
        # timestep embedding for diffusion
        cfg.align.model_args.time_embed_channels_mult = 4
        cfg.align.model_args.time_embed_use_scale_shift_norm = False
        cfg.align.model_args.time_embed_dropout = 0.0
        # readout
        cfg.align.model_args.pool = "attention"
        cfg.align.model_args.readout_seq = True
        cfg.align.model_args.out_len = 6

        cfg.latent_model = OmegaConf.create()
        cfg.latent_model.input_shape = [10, 16, 16, 4]
        cfg.latent_model.target_shape = [10, 16, 16, 4]
        cfg.latent_model.base_units = 4
        # block_units = null
        cfg.latent_model.scale_alpha = 1.0
        cfg.latent_model.num_heads = 4
        cfg.latent_model.attn_drop = 0.1
        cfg.latent_model.proj_drop = 0.1
        cfg.latent_model.ffn_drop = 0.1
        # inter-attn downsample/upsample
        cfg.latent_model.downsample = 2
        cfg.latent_model.downsample_type = "patch_merge"
        cfg.latent_model.upsample_type = "upsample"
        cfg.latent_model.upsample_kernel_size = 3
        # cuboid attention
        cfg.latent_model.depth = [1, 1]
        cfg.latent_model.self_pattern = "axial"
        # global vectors
        cfg.latent_model.num_global_vectors = 0
        cfg.latent_model.use_dec_self_global = False
        cfg.latent_model.dec_self_update_global = True
        cfg.latent_model.use_dec_cross_global = False
        cfg.latent_model.use_global_vector_ffn = False
        cfg.latent_model.use_global_self_attn = True
        cfg.latent_model.separate_global_qkv = True
        cfg.latent_model.global_dim_ratio = 1
        # mise
        cfg.latent_model.ffn_activation = "gelu"
        cfg.latent_model.gated_ffn = False
        cfg.latent_model.norm_layer = "layer_norm"
        cfg.latent_model.padding_type = "zeros"
        cfg.latent_model.pos_embed_type = "t+h+w"
        cfg.latent_model.checkpoint_level = 0
        cfg.latent_model.use_relative_pos = True
        cfg.latent_model.self_attn_use_final_proj = True
        # initialization
        cfg.latent_model.attn_linear_init_mode = "0"
        cfg.latent_model.ffn_linear_init_mode = "0"
        cfg.latent_model.ffn2_linear_init_mode = "2"
        cfg.latent_model.attn_proj_linear_init_mode = "2"
        cfg.latent_model.conv_init_mode = "0"
        cfg.latent_model.down_up_linear_init_mode = "0"
        cfg.latent_model.global_proj_linear_init_mode = "2"
        cfg.latent_model.norm_init_mode = "0"
        # timestep embedding for diffusion
        cfg.latent_model.time_embed_channels_mult = 4
        cfg.latent_model.time_embed_use_scale_shift_norm = False
        cfg.latent_model.time_embed_dropout = 0.0
        cfg.latent_model.unet_res_connect = True

        cfg.vae = OmegaConf.create()
        cfg.vae.data_channels = layout_cfg.data_channels
        # from stable-diffusion-v1-5
        cfg.vae.down_block_types = ['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D']
        cfg.vae.in_channels = cfg.vae.data_channels
        cfg.vae.block_out_channels = [128, 256, 512, 512]
        cfg.vae.act_fn = 'silu'
        cfg.vae.latent_channels = 4
        cfg.vae.up_block_types = ['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D']
        cfg.vae.norm_num_groups = 32
        cfg.vae.layers_per_block = 2
        cfg.vae.out_channels = cfg.vae.data_channels
        return cfg

    @staticmethod
    def get_dataset_config():
        cfg = OmegaConf.create()
        cfg.dataset_name = "sevir_lr"
        cfg.img_height = 128
        cfg.img_width = 128
        cfg.in_len = 7
        cfg.out_len = 6
        cfg.seq_len = 13
        cfg.plot_stride = 1
        cfg.interval_real_time = 10
        cfg.sample_mode = "sequent"
        cfg.stride = cfg.out_len
        cfg.layout = "NTHWC"
        cfg.start_date = None
        cfg.train_val_split_date = (2019, 1, 1)
        cfg.train_test_split_date = (2019, 6, 1)
        cfg.end_date = None
        cfg.metrics_mode = "0"
        cfg.metrics_list = ('csi', 'pod', 'sucr', 'bias')
        cfg.threshold_list = (16, 74, 133, 160, 181, 219)
        cfg.aug_mode = "1"
        return cfg

    @staticmethod
    def get_optim_config():
        cfg = OmegaConf.create()
        cfg.seed = None
        cfg.total_batch_size = 32
        cfg.micro_batch_size = 8
        cfg.float32_matmul_precision = "high"

        cfg.method = "adamw"
        cfg.lr = 1.0E-6
        cfg.wd = 1.0E-2
        cfg.betas = (0.9, 0.999)
        cfg.gradient_clip_val = 1.0
        cfg.max_epochs = 50
        cfg.loss_type = "l2"
        # scheduler
        cfg.warmup_percentage = 0.2
        cfg.lr_scheduler_mode = "cosine"  # Can be strings like 'linear', 'cosine', 'platue'
        cfg.min_lr_ratio = 1.0E-3
        cfg.warmup_min_lr_ratio = 0.0
        # early stopping
        cfg.monitor = "valid_loss_epoch"
        cfg.early_stop = False
        cfg.early_stop_mode = "min"
        cfg.early_stop_patience = 5
        cfg.save_top_k = 1
        return cfg

    @staticmethod
    def get_logging_config():
        cfg = OmegaConf.create()
        cfg.logging_prefix = "PreDiff"
        cfg.monitor_lr = True
        cfg.monitor_device = False
        cfg.track_grad_norm = -1
        cfg.use_wandb = False
        cfg.profiler = None
        cfg.save_npy = False
        return cfg

    @staticmethod
    def get_trainer_config():
        cfg = OmegaConf.create()
        cfg.check_val_every_n_epoch = 1
        cfg.log_step_ratio = 0.001  # Logging every 1% of the total training steps per epoch
        cfg.precision = 32
        cfg.find_unused_parameters = True
        cfg.num_sanity_val_steps = 2
        return cfg

    @staticmethod
    def get_eval_config():
        cfg = OmegaConf.create()
        cfg.train_example_data_idx_list = [0, ]
        cfg.val_example_data_idx_list = [0, ]
        cfg.test_example_data_idx_list = [0, ]
        cfg.eval_example_only = False
        cfg.eval_aligned = True
        cfg.eval_unaligned = True
        cfg.num_samples_per_context = 1
        cfg.font_size = 20
        cfg.label_offset = (-0.5, 0.5)
        cfg.label_avg_int = False
        cfg.fvd_features = 400
        return cfg
    # endregion
    
    # region Trainer and Optimizer Config
    def configure_optimizers(self):
        optim_cfg = self.oc.optim
        params = list(self.torch_nn_module.parameters())
        if self.cond_stage_trainable:
            print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
            params = params + list(self.cond_stage_model.parameters())
        if self.learn_logvar:
            print('Diffusion model optimizing logvar')
            params.append(self.logvar)

        if optim_cfg.method == "adamw":
            optimizer = torch.optim.AdamW(params, lr=optim_cfg.lr, betas=optim_cfg.betas)
        else:
            raise NotImplementedError(f"opimization method {optim_cfg.method} not supported.")

        warmup_iter = int(np.round(self.oc.optim.warmup_percentage * self.total_num_steps))
        if optim_cfg.lr_scheduler_mode == 'none':
            return {'optimizer': optimizer}
        else:
            if optim_cfg.lr_scheduler_mode == 'cosine':
                warmup_scheduler = LambdaLR(optimizer,
                                            lr_lambda=warmup_lambda(warmup_steps=warmup_iter,
                                                                    min_lr_ratio=optim_cfg.warmup_min_lr_ratio))
                cosine_scheduler = CosineAnnealingLR(optimizer,
                                                     T_max=(self.total_num_steps - warmup_iter),
                                                     eta_min=optim_cfg.min_lr_ratio * optim_cfg.lr)
                lr_scheduler = SequentialLR(optimizer, schedulers=[warmup_scheduler, cosine_scheduler],
                                            milestones=[warmup_iter])
                lr_scheduler_config = {
                    'scheduler': lr_scheduler,
                    'interval': 'step',
                    'frequency': 1,
                }
            else:
                raise NotImplementedError
            return {'optimizer': optimizer, 'lr_scheduler': lr_scheduler_config}

    def set_trainer_kwargs(self, **kwargs):
        r"""
        Default kwargs used when initializing pl.Trainer
        """
        if self.oc.logging.profiler is None:
            profiler = None
        elif self.oc.logging.profiler == "pytorch":
            profiler = PyTorchProfiler(filename=f"{self.oc.logging.logging_prefix}_PyTorchProfiler.log")
        else:
            raise NotImplementedError
        checkpoint_callback = ModelCheckpoint(
            monitor=self.oc.optim.monitor,
            dirpath=os.path.join(self.save_dir, "checkpoints"),
            filename="{epoch:03d}_{val/loss:.4f}",
            auto_insert_metric_name=False,
            save_top_k=self.oc.optim.save_top_k,
            save_last=True,
            mode="min",
        )
        callbacks = kwargs.pop("callbacks", [])
        assert isinstance(callbacks, list)
        for ele in callbacks:
            assert isinstance(ele, Callback)
        callbacks += [checkpoint_callback, ]
        if self.oc.logging.monitor_lr:
            callbacks += [LearningRateMonitor(logging_interval='step'), ]
        if self.oc.logging.monitor_device:
            callbacks += [DeviceStatsMonitor(), ]
        if self.oc.optim.early_stop:
            callbacks += [EarlyStopping(monitor=self.oc.optim.monitor,
                                        min_delta=0.0,
                                        patience=self.oc.optim.early_stop_patience,
                                        verbose=False,
                                        mode=self.oc.optim.early_stop_mode), ]

        logger = kwargs.pop("logger", [])
        tb_logger = pl_loggers.TensorBoardLogger(save_dir=self.save_dir)
        csv_logger = pl_loggers.CSVLogger(save_dir=self.save_dir)
        logger += [tb_logger, csv_logger]
        if self.oc.logging.use_wandb:
            wandb_logger = pl_loggers.WandbLogger(
                name = self.oc.logging.logging_name,
                id = self.oc.logging.run_id,
                project=self.oc.logging.logging_prefix,
                save_dir=self.save_dir
            )
            logger += [wandb_logger, ]

        log_every_n_steps = max(1, int(self.oc.trainer.log_step_ratio * self.total_num_steps))
        trainer_init_keys = inspect.signature(Trainer).parameters.keys()
        ret = dict(
            callbacks=callbacks,
            # log
            logger=logger,
            log_every_n_steps=log_every_n_steps,
            profiler=profiler,
            # save
            default_root_dir=self.save_dir,
            # ddp
            accelerator="gpu",
            strategy=DDPStrategy(find_unused_parameters=self.oc.trainer.find_unused_parameters),
            # strategy=ApexDDPStrategy(find_unused_parameters=False, delay_allreduce=True),
            # optimization
            max_epochs=self.oc.optim.max_epochs,
            check_val_every_n_epoch=self.oc.trainer.check_val_every_n_epoch,
            gradient_clip_val=self.oc.optim.gradient_clip_val,
            # NVIDIA amp
            precision=self.oc.trainer.precision,
            # misc
            num_sanity_val_steps=self.oc.trainer.num_sanity_val_steps,
            inference_mode=False,
        )
        oc_trainer_kwargs = OmegaConf.to_object(self.oc.trainer)
        oc_trainer_kwargs = {key: val for key, val in oc_trainer_kwargs.items() if key in trainer_init_keys}
        ret.update(oc_trainer_kwargs)
        ret.update(kwargs)
        return ret
    # endregion
    
    # region Properties Extraction and Misc Calc
    @classmethod
    def get_total_num_steps(
            cls,
            num_samples: int,
            total_batch_size: int,
            epoch: int = None):
        r"""
        Parameters
        ----------
        num_samples:    int
            The number of samples of the datasets. `num_samples / micro_batch_size` is the number of steps per epoch.
        total_batch_size:   int
            `total_batch_size == micro_batch_size * world_size * grad_accum`
        epoch: int
        """
        if epoch is None:
            epoch = cls.get_optim_config().max_epochs
        return int(epoch * num_samples / total_batch_size)

    @staticmethod
    def get_sevir_datamodule(dataset_cfg,
                             micro_batch_size: int = 1,
                             num_workers: int = 4):
        dm = SEVIRLightningDataModule(
            seq_len=dataset_cfg["seq_len"],
            sample_mode=dataset_cfg["sample_mode"],
            stride=dataset_cfg["stride"],
            batch_size=micro_batch_size,
            layout=dataset_cfg["layout"],
            output_type=np.float32,
            preprocess=True,
            rescale_method="01",
            verbose=False,
            aug_mode=dataset_cfg["aug_mode"],
            ret_contiguous=False,
            # datamodule_only
            dataset_name=dataset_cfg["dataset_name"],
            start_date=dataset_cfg["start_date"],
            train_test_split_date=dataset_cfg["train_test_split_date"],
            end_date=dataset_cfg["end_date"],
            val_ratio=dataset_cfg["val_ratio"],
            num_workers=num_workers, )
        return dm

    @property
    def in_slice(self):
        if not hasattr(self, "_in_slice"):
            in_slice, out_slice = step_layout_to_in_out_slice(
                layout=self.oc.layout.layout,
                in_len=self.oc.layout.in_len, in_step= self.oc.layout.in_step,
                out_len=self.oc.layout.out_len, out_step = self.oc.layout.out_step,
                in_out_diff= self.oc.layout.in_out_diff
            )
            self._in_slice = in_slice
            self._out_slice = out_slice
        return self._in_slice

    @property
    def out_slice(self):
        if not hasattr(self, "_out_slice"):
            in_slice, out_slice = step_layout_to_in_out_slice(
                layout=self.oc.layout.layout,
                in_len=self.oc.layout.in_len, in_step= self.oc.layout.in_step,
                out_len=self.oc.layout.out_len, out_step = self.oc.layout.out_step,
                in_out_diff= self.oc.layout.in_out_diff
            )
            self._in_slice = in_slice
            self._out_slice = out_slice
        return self._out_slice

    @torch.no_grad()
    def get_input(self, batch, **kwargs):
        r"""
        dataset dependent
        re-implement it for each specific dataset

        Parameters
        ----------
        batch:  Any
            raw data batch from specific dataloader

        Returns
        -------
        out:    Sequence[torch.Tensor, Dict[str, Any]]
            out[0] should be a torch.Tensor which is the target to generate
            out[1] should be a dict consists of several key-value pairs for conditioning
        """
        return self._get_input_sevirlr(batch=batch, return_verbose=kwargs.get("return_verbose", False))

    @torch.no_grad()
    def _get_input_sevirlr(self, batch, return_verbose=False):
        seq = batch
        in_seq = seq[self.in_slice]
        out_seq = seq[self.out_slice].contiguous()
        if return_verbose:
            return out_seq, {"y": in_seq}, in_seq
        else:
            return out_seq, {"y": in_seq}
    # endregion
    
    # region Operation Step
    def training_step(self, batch, batch_idx):
        loss, loss_dict = self(batch)
        self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=False)
        micro_batch_size = batch.shape[self.batch_axis]
        data_idx = int(batch_idx * micro_batch_size)
        if self.current_epoch % self.oc.trainer.check_val_every_n_epoch == 0 \
                and self.local_rank == 0:
            if data_idx in self.train_example_data_idx_list:
                target_seq, cond, context_seq = \
                    self.get_input(batch, return_verbose=True)
                aligned_pred_seq_list = []
                aligned_pred_label_list = []
                pred_seq_list = []
                pred_label_list = []
                for i in range(self.oc.eval.num_samples_per_context):
                    # aligned sampling
                    if self.use_alignment and self.oc.eval.eval_aligned:
                        if self.alignment_type == "avg_x":
                            alignment_kwargs = get_alignment_kwargs_avg_x(context_seq=context_seq,
                                                                          target_seq=target_seq)
                        else:
                            raise NotImplementedError
                        pred_seq = self.sample(
                            cond=cond,
                            batch_size=micro_batch_size,
                            return_intermediates=False,
                            use_alignment=True,
                            alignment_kwargs=alignment_kwargs,
                            verbose=False, ).contiguous()
                        aligned_pred_seq_list.append(pred_seq[0].detach().float().cpu().numpy())
                        aligned_pred_label_list.append(f"{self.oc.logging.logging_prefix}_aligned_pred_{i}")
                    # no alignment
                    if self.oc.eval.eval_unaligned:
                        pred_seq = self.sample(
                            cond=cond,
                            batch_size=micro_batch_size,
                            return_intermediates=False,
                            verbose=False, ).contiguous()
                        pred_seq_list.append(pred_seq[0].detach().float().cpu().numpy())
                        pred_label_list.append(f"{self.oc.logging.logging_prefix}_pred_{i}")
                pred_seq_list = aligned_pred_seq_list + pred_seq_list
                pred_label_list = aligned_pred_label_list + pred_label_list
                self.save_vis_step_end(
                    data_idx=data_idx,
                    context_seq=context_seq[0].detach().float().cpu().numpy(),
                    target_seq=target_seq[0].detach().float().cpu().numpy(),
                    pred_seq=pred_seq_list,
                    pred_label=pred_label_list,
                    mode="train", )
        return loss

    def validation_step(self, batch, batch_idx):
        _, loss_dict_no_ema = self(batch)
        with self.ema_scope():
            _, loss_dict_ema = self(batch)
            loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
        self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True, sync_dist=True)
        self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True, sync_dist=True)
        micro_batch_size = batch.shape[self.batch_axis]
        data_idx = int(batch_idx * micro_batch_size)
        if not self.eval_example_only or data_idx in self.val_example_data_idx_list:
            target_seq, cond, context_seq = \
                self.get_input(batch, return_verbose=True)
            aligned_pred_seq_list = []
            aligned_pred_label_list = []
            pred_seq_list = []
            pred_label_list = []
            for i in range(self.oc.eval.num_samples_per_context):
                # aligned sampling
                if self.use_alignment and self.oc.eval.eval_aligned:
                    if self.alignment_type == "avg_x":
                        alignment_kwargs = get_alignment_kwargs_avg_x(context_seq=context_seq,
                                                                      target_seq=target_seq)
                    else:
                        raise NotImplementedError
                    pred_seq = self.sample(
                        cond=cond,
                        batch_size=micro_batch_size,
                        return_intermediates=False,
                        use_alignment=True,
                        alignment_kwargs=alignment_kwargs,
                        verbose=False, ).contiguous()
                    aligned_pred_seq_list.append(pred_seq[0].detach().float().cpu().numpy())
                    aligned_pred_label_list.append(f"{self.oc.logging.logging_prefix}_aligned_pred_{i}")
                    if pred_seq.dtype is not torch.float:
                        pred_seq = pred_seq.float()
                    self.valid_aligned_mse(pred_seq, target_seq)
                    self.valid_aligned_mae(pred_seq, target_seq)
                    self.valid_aligned_score.update(pred_seq, target_seq)
                # no alignment
                if self.oc.eval.eval_unaligned:
                    pred_seq = self.sample(
                        cond=cond,
                        batch_size=micro_batch_size,
                        return_intermediates=False,
                        verbose=False, ).contiguous()
                    pred_seq_list.append(pred_seq[0].detach().float().cpu().numpy())
                    pred_label_list.append(f"{self.oc.logging.logging_prefix}_pred_{i}")
                    if pred_seq.dtype is not torch.float:
                        pred_seq = pred_seq.float()
                    self.valid_mse(pred_seq, target_seq)
                    self.valid_mae(pred_seq, target_seq)
                    self.valid_score.update(pred_seq, target_seq)
            pred_seq_list = aligned_pred_seq_list + pred_seq_list
            pred_label_list = aligned_pred_label_list + pred_label_list
            self.save_vis_step_end(
                data_idx=data_idx,
                context_seq=context_seq[0].detach().float().cpu().numpy(),
                target_seq=target_seq[0].detach().float().cpu().numpy(),
                pred_seq=pred_seq_list,
                pred_label=pred_label_list,
                mode="val",
                suffix=f"_rank{self.local_rank}", )
    def on_validation_epoch_end(self):
        if self.oc.eval.eval_unaligned:
            valid_mse = self.valid_mse.compute()
            valid_mae = self.valid_mae.compute()
            valid_score = self.valid_score.compute()
            valid_loss = -valid_score["avg"]["csi"]

            self.log('valid_loss_epoch', valid_loss, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True)
            self.log('valid_mse_epoch', valid_mse, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True)
            self.log('valid_mae_epoch', valid_mae, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True)
            self.log_score_epoch_end(score_dict=valid_score, prefix="valid")
            self.valid_mse.reset()
            self.valid_mae.reset()
            self.valid_score.reset()
        if self.oc.eval.eval_aligned:
            valid_mse = self.valid_aligned_mse.compute()
            valid_mae = self.valid_aligned_mae.compute()
            valid_score = self.valid_aligned_score.compute()
            valid_loss = -valid_score["avg"]["csi"]

            self.log('valid_aligned_loss_epoch', valid_loss, prog_bar=True, on_step=False, on_epoch=True,
                     sync_dist=True)
            self.log('valid_aligned_mse_epoch', valid_mse, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True)
            self.log('valid_aligned_mae_epoch', valid_mae, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True)
            self.log_score_epoch_end(score_dict=valid_score, prefix="valid_aligned")
            self.valid_aligned_mse.reset()
            self.valid_aligned_mae.reset()
            self.valid_aligned_score.reset()

    def test_step(self, batch, batch_idx):
        micro_batch_size = batch.shape[self.batch_axis]
        data_idx = int(batch_idx * micro_batch_size)
        if not self.eval_example_only or data_idx in self.val_example_data_idx_list:
            target_seq, cond, context_seq = \
                self.get_input(batch, return_verbose=True)
            target_seq_bchw = rearrange(target_seq, "b t h w c -> (b t) c h w")
            aligned_pred_seq_list = []
            aligned_pred_label_list = []
            pred_seq_list = []
            pred_label_list = []
            for i in range(self.oc.eval.num_samples_per_context):
                # aligned sampling
                if self.use_alignment and self.oc.eval.eval_aligned:
                    if self.alignment_type == "avg_x":
                        alignment_kwargs = get_alignment_kwargs_avg_x(context_seq=context_seq,
                                                                      target_seq=target_seq)
                    else:
                        raise NotImplementedError
                    pred_seq = self.sample(
                        cond=cond,
                        batch_size=micro_batch_size,
                        return_intermediates=False,
                        use_alignment=True,
                        alignment_kwargs=alignment_kwargs,
                        verbose=False, ).contiguous()
                    if self.oc.logging.save_npy:
                        npy_path = os.path.join(self.npy_save_dir,
                                                f"batch{batch_idx}_rank{self.local_rank}_sample{i}_aligned.npy")
                        np.save(npy_path, pred_seq.detach().float().cpu().numpy())
                    aligned_pred_seq_list.append(pred_seq[0].detach().float().cpu().numpy())
                    aligned_pred_label_list.append(f"{self.oc.logging.logging_prefix}_aligned_pred_{i}")
                    if pred_seq.dtype is not torch.float:
                        pred_seq = pred_seq.float()
                    self.test_aligned_mse(pred_seq, target_seq)
                    self.test_aligned_mae(pred_seq, target_seq)
                    self.test_aligned_score.update(pred_seq, target_seq)
                    # self.test_aligned_fvd.update(pred_seq, real=False)
                    pred_seq_bchw = rearrange(pred_seq, "b t h w c -> (b t) c h w")
                    self.test_aligned_ssim(pred_seq_bchw, target_seq_bchw)
                # no alignment
                if self.oc.eval.eval_unaligned:
                    pred_seq = self.sample(
                        cond=cond,
                        batch_size=micro_batch_size,
                        return_intermediates=False,
                        verbose=False, ).contiguous()
                    if self.oc.logging.save_npy:
                        npy_path = os.path.join(self.npy_save_dir,
                                                f"batch{batch_idx}_rank{self.local_rank}_sample{i}.npy")
                        np.save(npy_path, pred_seq.detach().float().cpu().numpy())
                    pred_seq_list.append(pred_seq[0].detach().float().cpu().numpy())
                    pred_label_list.append(f"{self.oc.logging.logging_prefix}_pred_{i}")
                    if pred_seq.dtype is not torch.float:
                        pred_seq = pred_seq.float()
                    self.test_mse(pred_seq, target_seq)
                    self.test_mae(pred_seq, target_seq)
                    self.test_score.update(pred_seq, target_seq)
                    # self.test_fvd.update(pred_seq, real=False)
                    pred_seq_bchw = rearrange(pred_seq, "b t h w c -> (b t) c h w")
                    self.test_ssim(pred_seq_bchw, target_seq_bchw)
            # if self.use_alignment and self.oc.eval.eval_aligned:
            #     self.test_aligned_fvd.update(target_seq, real=True)
            # if self.oc.eval.eval_unaligned:
            #     self.test_fvd.update(target_seq, real=True)
            pred_seq_list = aligned_pred_seq_list + pred_seq_list
            pred_label_list = aligned_pred_label_list + pred_label_list
            self.save_vis_step_end(
                data_idx=data_idx,
                context_seq=context_seq[0].detach().float().cpu().numpy(),
                target_seq=target_seq[0].detach().float().cpu().numpy(),
                pred_seq=pred_seq_list,
                pred_label=pred_label_list,
                mode="test",
                suffix=f"_rank{self.local_rank}", )
    def on_test_epoch_end(self):
        if self.oc.eval.eval_unaligned:
            test_mse = self.test_mse.compute()
            test_mae = self.test_mae.compute()
            test_ssim = self.test_ssim.compute()
            test_score = self.test_score.compute()
            # test_fvd = self.test_fvd.compute()

            self.log('test_mse_epoch', test_mse, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True)
            self.log('test_mae_epoch', test_mae, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True)
            self.log('test_ssim_epoch', test_ssim, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True)
            self.log_score_epoch_end(score_dict=test_score, prefix="test")
            # self.log('test_fvd_epoch', test_fvd, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True)
            self.test_mse.reset()
            self.test_mae.reset()
            self.test_ssim.reset()
            self.test_score.reset()
            # self.test_fvd.reset()
        if self.oc.eval.eval_aligned:
            test_mse = self.test_aligned_mse.compute()
            test_mae = self.test_aligned_mae.compute()
            test_ssim = self.test_aligned_ssim.compute()
            test_score = self.test_aligned_score.compute()
            # test_fvd = self.test_aligned_fvd.compute()

            self.log('test_aligned_mse_epoch', test_mse, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True)
            self.log('test_aligned_mae_epoch', test_mae, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True)
            self.log('test_aligned_ssim_epoch', test_ssim, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True)
            self.log_score_epoch_end(score_dict=test_score, prefix="test_aligned")
            # self.log('test_aligned_fvd_epoch', test_fvd, prog_bar=True, on_step=False, on_epoch=True, sync_dist=True)
            self.test_aligned_mse.reset()
            self.test_aligned_mae.reset()
            self.test_aligned_ssim.reset()
            self.test_aligned_score.reset()
            # self.test_aligned_fvd.reset()
    # endregion
    
    def save_vis_step_end(
            self,
            data_idx: int,
            context_seq: np.ndarray,
            target_seq: np.ndarray,
            pred_seq: Union[np.ndarray, Sequence[np.ndarray]],
            pred_label: Union[str, Sequence[str]] = None,
            label_mode: str = "name",
            mode: str = "train",
            prefix: str = "",
            suffix: str = "", ):
        r"""
        Parameters
        ----------
        data_idx
        context_seq, target_seq, pred_seq:   np.ndarray
            layout should not include batch
        mode:   str
        """
        if mode == "train":
            example_data_idx_list = self.train_example_data_idx_list
        elif mode == "val":
            example_data_idx_list = self.val_example_data_idx_list
        elif mode == "test":
            example_data_idx_list = self.test_example_data_idx_list
        else:
            raise ValueError(f"Wrong mode {mode}! Must be in ['train', 'val', 'test'].")
        if label_mode == "name":
            # use the given label
            context_label = "context"
            target_label = "target"
        elif label_mode == "avg_int":
            context_label = f"context\navg_int={np.mean(context_seq):.4f}"
            target_label = f"target\navg_int={np.mean(target_seq):.4f}"
            if isinstance(pred_label, Sequence):
                pred_label = [f"{label}\navg_int={np.mean(seq):.4f}" for label, seq in zip(pred_label, pred_seq)]
            elif isinstance(pred_label, str):
                pred_label = f"{pred_label}\navg_int={np.mean(pred_seq):.4f}"
            else:
                raise TypeError(f"Wrong pred_label type {type(pred_label)}! must be in [str, Sequence[str]].")
        else:
            raise NotImplementedError
        if isinstance(pred_seq, Sequence):
            seq_list = [context_seq, target_seq] + list(pred_seq)
            label_list = [context_label, target_label] + pred_label
        else:
            seq_list = [context_seq, target_seq, pred_seq]
            label_list = [context_label, target_label, pred_label]
        if data_idx in example_data_idx_list:
            png_save_name = f"{prefix}{mode}_epoch_{self.current_epoch}_data_{data_idx}{suffix}.png"
            vis_sevir_seq(
                save_path=os.path.join(self.example_save_dir, png_save_name),
                seq=seq_list,
                label=label_list,
                interval_real_time=10,
                plot_stride=1, fs=self.oc.eval.fs,
                label_offset=self.oc.eval.label_offset,
                label_avg_int=self.oc.eval.label_avg_int, )

    def log_score_epoch_end(self, score_dict: Dict, prefix: str = "valid"):
        for metrics in self.oc.dataset.metrics_list:
            for thresh in self.oc.dataset.threshold_list:
                score_mean = np.mean(score_dict[thresh][metrics]).item()
                self.log(f"{prefix}_{metrics}_{thresh}_epoch", score_mean,
                         prog_bar=True, on_step=False, on_epoch=True, sync_dist=True)
            score_avg_mean = score_dict.get("avg", None)
            if score_avg_mean is not None:
                score_avg_mean = np.mean(score_avg_mean[metrics]).item()
                self.log(f"{prefix}_{metrics}_avg_epoch", score_avg_mean,
                         prog_bar=True, on_step=False, on_epoch=True, sync_dist=True)

    def on_before_optimizer_step(self, optimizer):
        # Compute the 2-norm for each layer
        # If using mixed precision, the gradients are already unscaled here
        # reference: https://lightning.ai/docs/pytorch/2.0.9/debug/debugging_intermediate.html#look-out-for-exploding-gradients
        if self.oc.logging.track_grad_norm != -1:
            norms = grad_norm(self.torch_nn_module, norm_type=self.oc.logging.track_grad_norm)
            self.log_dict(norms)