|
|
""" |
|
|
Code is adapted from https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/models/diffusion/ddpm.py |
|
|
""" |
|
|
|
|
|
import warnings |
|
|
from typing import Sequence, Union, Dict, Any, Optional, Callable |
|
|
from functools import partial |
|
|
from einops import rearrange |
|
|
|
|
|
import torch |
|
|
from torch import nn |
|
|
from torch.nn import functional as F |
|
|
import numpy as np |
|
|
import lightning.pytorch as pl |
|
|
from lightning.pytorch.utilities.rank_zero import rank_zero_only |
|
|
from diffusers.models.autoencoder_kl import AutoencoderKLOutput, DecoderOutput |
|
|
|
|
|
from models.model_utils.distributions import DiagonalGaussianDistribution |
|
|
from models.core_model.diffusion_utils import make_beta_schedule, extract_into_tensor, default |
|
|
from utils.layout import parse_layout_shape |
|
|
from utils.optim import disabled_train, get_loss_fn |
|
|
|
|
|
|
|
|
class AlignmentPL(pl.LightningModule): |
|
|
def __init__( |
|
|
self, |
|
|
torch_nn_module: nn.Module, |
|
|
target_fn: Callable, |
|
|
layout: str = "NTHWC", |
|
|
timesteps=1000, |
|
|
beta_schedule="linear", |
|
|
loss_type: str = "l2", |
|
|
monitor="val_loss", |
|
|
linear_start=1e-4, |
|
|
linear_end=2e-2, |
|
|
cosine_s=8e-3, |
|
|
given_betas=None, |
|
|
|
|
|
first_stage_model: Union[Dict[str, Any], nn.Module] = None, |
|
|
cond_stage_model: Union[str, Dict[str, Any], nn.Module] = None, |
|
|
num_timesteps_cond=None, |
|
|
cond_stage_trainable=False, |
|
|
cond_stage_forward=None, |
|
|
scale_by_std=False, |
|
|
scale_factor=1.0, |
|
|
): |
|
|
r""" |
|
|
Parameters |
|
|
---------- |
|
|
Parameters |
|
|
---------- |
|
|
torch_nn_module: nn.Module |
|
|
The `.forward()` method of model should have the following signature: |
|
|
`output = model.forward(zt, t, y, zc, **kwargs)` |
|
|
target_fn: Callable |
|
|
The function that the `torch_nn_module` is going to learn. |
|
|
The signature of `target_fn` should be: |
|
|
`violation_score = target_fn(x, y=None, **kwargs)` |
|
|
layout: str |
|
|
e.g., "NTHWC", "NHWC". |
|
|
timesteps: int |
|
|
1000 by default. |
|
|
beta_schedule: str |
|
|
one of ["linear", "cosine", "sqrt_linear", "sqrt"]. |
|
|
loss_type: str |
|
|
one of ["l2", "l1"]. |
|
|
monitor: str |
|
|
name of logged var for selecting best val model. |
|
|
linear_start: float |
|
|
linear_end: float |
|
|
cosine_s: float |
|
|
given_betas: Optional |
|
|
If provided, `linear_start`, `linear_end`, `cosine_s` take no effect. |
|
|
If None, `linear_start`, `linear_end`, `cosine_s` are used to generate betas via `make_beta_schedule()`. |
|
|
first_stage_model: Dict or nn.Module |
|
|
Dict : configs for instantiating the first_stage_model. |
|
|
nn.Module : a model that has method ".encode()" to encode the inputs. |
|
|
cond_stage_model: str or Dict or nn.Module |
|
|
"__is_first_stage__": use the first_stage_model also for encoding conditionings. |
|
|
Dict : configs for instantiating the cond_stage_model. |
|
|
nn.Module : a model that has method ".encode()" or use `self()` to encodes the conditionings. |
|
|
cond_stage_trainable: bool |
|
|
Whether to train the cond_stage_model jointly |
|
|
num_timesteps_cond: int |
|
|
cond_stage_forward: str |
|
|
The name of the forward method of the cond_stage_model. |
|
|
scale_by_std |
|
|
scale_factor |
|
|
""" |
|
|
super(AlignmentPL, self).__init__() |
|
|
self.torch_nn_module = torch_nn_module |
|
|
self.target_fn = target_fn |
|
|
self.loss_fn = get_loss_fn(loss_type) |
|
|
self.layout = layout |
|
|
self.parse_layout_shape(layout=layout) |
|
|
|
|
|
if monitor is not None: |
|
|
self.monitor = monitor |
|
|
|
|
|
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps, |
|
|
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) |
|
|
|
|
|
self.num_timesteps_cond = default(num_timesteps_cond, 1) |
|
|
assert self.num_timesteps_cond <= timesteps |
|
|
self.shorten_cond_schedule = self.num_timesteps_cond > 1 |
|
|
if self.shorten_cond_schedule: |
|
|
self.make_cond_schedule() |
|
|
|
|
|
self.cond_stage_trainable = cond_stage_trainable |
|
|
self.scale_by_std = scale_by_std |
|
|
if not scale_by_std: |
|
|
self.scale_factor = scale_factor |
|
|
else: |
|
|
self.register_buffer('scale_factor', torch.tensor(scale_factor)) |
|
|
|
|
|
self.instantiate_first_stage(first_stage_model) |
|
|
self.instantiate_cond_stage(cond_stage_model, cond_stage_forward) |
|
|
|
|
|
def parse_layout_shape(self, layout): |
|
|
parsed_dict = parse_layout_shape(layout=layout) |
|
|
self.batch_axis = parsed_dict["batch_axis"] |
|
|
self.t_axis = parsed_dict["t_axis"] |
|
|
self.h_axis = parsed_dict["h_axis"] |
|
|
self.w_axis = parsed_dict["w_axis"] |
|
|
self.c_axis = parsed_dict["c_axis"] |
|
|
self.all_slice = [slice(None, None), ] * len(layout) |
|
|
|
|
|
def extract_into_tensor(self, a, t, x_shape): |
|
|
return extract_into_tensor(a=a, t=t, x_shape=x_shape, |
|
|
batch_axis=self.batch_axis) |
|
|
|
|
|
@property |
|
|
def loss_mean_dim(self): |
|
|
|
|
|
if not hasattr(self, "_loss_mean_dim"): |
|
|
_loss_mean_dim = list(range(len(self.layout))) |
|
|
_loss_mean_dim.pop(self.batch_axis) |
|
|
self._loss_mean_dim = tuple(_loss_mean_dim) |
|
|
return self._loss_mean_dim |
|
|
|
|
|
def register_schedule(self, |
|
|
given_betas=None, beta_schedule="linear", timesteps=1000, |
|
|
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): |
|
|
if given_betas is not None: |
|
|
betas = given_betas |
|
|
else: |
|
|
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, |
|
|
cosine_s=cosine_s) |
|
|
alphas = 1. - betas |
|
|
alphas_cumprod = np.cumprod(alphas, axis=0) |
|
|
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) |
|
|
|
|
|
timesteps, = betas.shape |
|
|
self.num_timesteps = int(timesteps) |
|
|
self.linear_start = linear_start |
|
|
self.linear_end = linear_end |
|
|
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' |
|
|
|
|
|
to_torch = partial(torch.tensor, dtype=torch.float32) |
|
|
|
|
|
self.register_buffer('betas', to_torch(betas)) |
|
|
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) |
|
|
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) |
|
|
|
|
|
|
|
|
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) |
|
|
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) |
|
|
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) |
|
|
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) |
|
|
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) |
|
|
|
|
|
def make_cond_schedule(self, ): |
|
|
cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long) |
|
|
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long() |
|
|
cond_ids[:self.num_timesteps_cond] = ids |
|
|
self.register_buffer('cond_ids', cond_ids) |
|
|
|
|
|
@rank_zero_only |
|
|
@torch.no_grad() |
|
|
def on_train_batch_start(self, batch, batch_idx): |
|
|
|
|
|
|
|
|
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt: |
|
|
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously' |
|
|
|
|
|
print("### USING STD-RESCALING ###") |
|
|
x, _ = self.get_input(batch) |
|
|
x = x.to(self.device) |
|
|
x = rearrange(x, f"{self.einops_layout} -> {self.einops_spatial_layout}") |
|
|
z = self.encode_first_stage(x) |
|
|
del self.scale_factor |
|
|
self.register_buffer('scale_factor', 1. / z.flatten().std()) |
|
|
print(f"setting self.scale_factor to {self.scale_factor}") |
|
|
print("### USING STD-RESCALING ###") |
|
|
|
|
|
def instantiate_first_stage(self, first_stage_model): |
|
|
if isinstance(first_stage_model, nn.Module): |
|
|
model = first_stage_model |
|
|
else: |
|
|
assert first_stage_model is None |
|
|
raise NotImplementedError("No default first_stage_model supported yet!") |
|
|
self.first_stage_model = model.eval() |
|
|
self.first_stage_model.train = disabled_train |
|
|
for param in self.first_stage_model.parameters(): |
|
|
param.requires_grad = False |
|
|
|
|
|
def instantiate_cond_stage(self, cond_stage_model, cond_stage_forward): |
|
|
if cond_stage_model is None: |
|
|
self.cond_stage_model = None |
|
|
self.cond_stage_forward = None |
|
|
return |
|
|
|
|
|
is_first_stage_flag = cond_stage_model == "__is_first_stage__" |
|
|
if cond_stage_model == "__is_first_stage__": |
|
|
model = self.first_stage_model |
|
|
if self.cond_stage_trainable: |
|
|
warnings.warn("`cond_stage_trainable` is True while `cond_stage_model` is '__is_first_stage__'. " |
|
|
"force `cond_stage_trainable` to be False") |
|
|
self.cond_stage_trainable = False |
|
|
elif isinstance(cond_stage_model, nn.Module): |
|
|
model = cond_stage_model |
|
|
else: |
|
|
raise NotImplementedError |
|
|
self.cond_stage_model = model |
|
|
if (self.cond_stage_model is not None) and (not self.cond_stage_trainable): |
|
|
for param in self.cond_stage_model.parameters(): |
|
|
param.requires_grad = False |
|
|
|
|
|
if cond_stage_forward is None: |
|
|
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): |
|
|
cond_stage_forward = self.cond_stage_model.encode |
|
|
else: |
|
|
cond_stage_forward = self.cond_stage_model.__call__ |
|
|
else: |
|
|
assert hasattr(self.cond_stage_model, cond_stage_forward) |
|
|
cond_stage_forward = getattr(self.cond_stage_model, cond_stage_forward) |
|
|
|
|
|
def wrapper(cond_stage_forward: Callable, is_first_stage_flag=False): |
|
|
def func(c: Dict[str, Any]): |
|
|
if is_first_stage_flag: |
|
|
|
|
|
|
|
|
c = c.get("y") |
|
|
batch_size = c.shape[self.batch_axis] |
|
|
c = rearrange(c, f"{self.einops_layout} -> {self.einops_spatial_layout}") |
|
|
c = cond_stage_forward(c) |
|
|
if isinstance(c, DiagonalGaussianDistribution): |
|
|
c = c.mode() |
|
|
elif isinstance(c, AutoencoderKLOutput): |
|
|
c = c.latent_dist.mode() |
|
|
else: |
|
|
pass |
|
|
if is_first_stage_flag: |
|
|
c = rearrange(c, f"{self.einops_spatial_layout} -> {self.einops_layout}", N=batch_size) |
|
|
return c |
|
|
return func |
|
|
self.cond_stage_forward = wrapper(cond_stage_forward, is_first_stage_flag) |
|
|
|
|
|
def get_first_stage_encoding(self, encoder_posterior): |
|
|
if isinstance(encoder_posterior, DiagonalGaussianDistribution): |
|
|
z = encoder_posterior.sample() |
|
|
elif isinstance(encoder_posterior, torch.Tensor): |
|
|
z = encoder_posterior |
|
|
elif isinstance(encoder_posterior, AutoencoderKLOutput): |
|
|
z = encoder_posterior.latent_dist.sample() |
|
|
else: |
|
|
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented") |
|
|
return self.scale_factor * z |
|
|
|
|
|
def get_learned_conditioning(self, c): |
|
|
r""" |
|
|
Try the following approaches to encode the conditional input `c`: |
|
|
1. `self.cond_stage_forward` is a str, call the method of `self.cond_stage_model`. |
|
|
2. call `encode()` method of `self.cond_stage_model`. |
|
|
3. call `forward()` of `self.cond_stage_model`, i.e., `self.cond_stage_model()`. |
|
|
""" |
|
|
if self.cond_stage_forward is None: |
|
|
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): |
|
|
c = self.cond_stage_model.encode(c) |
|
|
if isinstance(c, DiagonalGaussianDistribution): |
|
|
c = c.mode() |
|
|
else: |
|
|
c = self.cond_stage_model(c) |
|
|
else: |
|
|
assert hasattr(self.cond_stage_model, self.cond_stage_forward) |
|
|
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) |
|
|
return c |
|
|
|
|
|
@property |
|
|
def einops_layout(self): |
|
|
return " ".join(self.layout) |
|
|
|
|
|
@property |
|
|
def einops_spatial_layout(self): |
|
|
if not hasattr(self, "_einops_spatial_layout"): |
|
|
assert len(self.layout) == 4 or len(self.layout) == 5 |
|
|
self._einops_spatial_layout = "(N T) C H W" if self.layout.find("T") else "N C H W" |
|
|
return self._einops_spatial_layout |
|
|
|
|
|
@torch.no_grad() |
|
|
def decode_first_stage(self, z, force_not_quantize=False): |
|
|
z = 1. / self.scale_factor * z |
|
|
batch_size = z.shape[self.batch_axis] |
|
|
z = rearrange(z, f"{self.einops_layout} -> {self.einops_spatial_layout}") |
|
|
output = self.first_stage_model.decode(z) |
|
|
if isinstance(output, DecoderOutput): |
|
|
output = output.sample |
|
|
output = rearrange(output, f"{self.einops_spatial_layout} -> {self.einops_layout}", N=batch_size) |
|
|
return output |
|
|
|
|
|
@torch.no_grad() |
|
|
def encode_first_stage(self, x): |
|
|
encoder_posterior = self.first_stage_model.encode(x) |
|
|
output = self.get_first_stage_encoding(encoder_posterior).detach() |
|
|
return output |
|
|
|
|
|
def q_sample(self, x_start, t, noise=None): |
|
|
noise = default(noise, lambda: torch.randn_like(x_start)) |
|
|
return (self.extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + |
|
|
self.extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) |
|
|
|
|
|
@torch.no_grad() |
|
|
def get_input(self, batch, **kwargs): |
|
|
r""" |
|
|
dataset dependent |
|
|
re-implement it for each specific dataset |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
batch: Any |
|
|
raw data batch from specific dataloader |
|
|
|
|
|
Returns |
|
|
------- |
|
|
out: Sequence[torch.Tensor, Dict[str, Any]] |
|
|
out[0] should be a torch.Tensor which is the target to generate |
|
|
out[1] should be a dict consists of several key-value pairs for conditioning |
|
|
""" |
|
|
return batch |
|
|
|
|
|
def forward(self, batch, t=None, verbose=False, return_verbose=False, **kwargs): |
|
|
|
|
|
x, c, aux_input_dict = self.get_input(batch) |
|
|
if verbose: |
|
|
print("inputs:") |
|
|
print(f"x.shape = {x.shape}") |
|
|
for key, val in c.items(): |
|
|
if hasattr(val, "shape"): |
|
|
print(f"{key}.shape = {val.shape}") |
|
|
batch_size = x.shape[self.batch_axis] |
|
|
x = x.to(self.device) |
|
|
x_spatial = rearrange(x, f"{self.einops_layout} -> {self.einops_spatial_layout}") |
|
|
z = self.encode_first_stage(x_spatial) |
|
|
if verbose: |
|
|
print("after first stage:") |
|
|
print(f"z.shape = {z.shape}") |
|
|
|
|
|
z = rearrange(z, f"{self.einops_spatial_layout} -> {self.einops_layout}", N=batch_size) |
|
|
|
|
|
if t is None: |
|
|
t = torch.randint(0, self.num_timesteps, (batch_size,), device=self.device).long() |
|
|
y = c if isinstance(c, torch.Tensor) else c.get("y", None) |
|
|
if self.cond_stage_model is not None: |
|
|
assert c is not None |
|
|
zc = self.cond_stage_forward(c) |
|
|
if self.shorten_cond_schedule: |
|
|
tc = self.cond_ids[t] |
|
|
zc = self.q_sample(x_start=zc, t=tc, noise=torch.randn_like(c.float())) |
|
|
if verbose and hasattr(zc, "shape"): |
|
|
print(f"zc.shape = {zc.shape}") |
|
|
else: |
|
|
zc = y |
|
|
if verbose and hasattr(y, "shape"): |
|
|
print(f"y.shape = {y.shape}") |
|
|
|
|
|
zt = self.q_sample(x_start=z, t=t, noise=torch.randn_like(z)) |
|
|
target = self.target_fn(x, y, **aux_input_dict) |
|
|
pred = self.torch_nn_module(zt, t, y=y, zc=zc, **aux_input_dict) |
|
|
loss = self.loss_fn(pred, target) |
|
|
|
|
|
with torch.no_grad(): |
|
|
mae = F.l1_loss(pred, target).float().cpu().item() |
|
|
avg_gt = torch.abs(target).mean().float().cpu().item() |
|
|
loss_dict = { |
|
|
"mae": mae, |
|
|
"avg_gt": avg_gt, |
|
|
"relative_mae": mae / (avg_gt + 1E-8), |
|
|
} |
|
|
if return_verbose: |
|
|
return loss, loss_dict, \ |
|
|
{"pred": pred, "target": target, "t": t, "zc": zc, "zt": zt} |
|
|
else: |
|
|
return loss, loss_dict |
|
|
|
|
|
def training_step(self, batch, batch_idx): |
|
|
loss, loss_dict = self(batch) |
|
|
self.log("train_loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=False) |
|
|
loss_dict = {f"train/{key}": val for key, val in loss_dict.items()} |
|
|
self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=False) |
|
|
return loss |
|
|
|
|
|
def validation_step(self, batch, batch_idx): |
|
|
loss, loss_dict = self(batch) |
|
|
self.log("val_loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True) |
|
|
loss_dict = {f"val/{key}": val for key, val in loss_dict.items()} |
|
|
self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True) |
|
|
return loss |
|
|
|
|
|
def test_step(self, batch, batch_idx): |
|
|
loss, loss_dict = self(batch) |
|
|
self.log("test_loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True) |
|
|
loss_dict = {f"test/{key}": val for key, val in loss_dict.items()} |
|
|
self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True) |
|
|
return loss |
|
|
|
|
|
def configure_optimizers(self): |
|
|
lr = self.learning_rate |
|
|
params = list(self.torch_nn_module.parameters()) |
|
|
if self.cond_stage_trainable: |
|
|
print(f"{self.__class__.__name__}: Also optimizing conditioner params!") |
|
|
params = params + list(self.cond_stage_model.parameters()) |
|
|
opt = torch.optim.AdamW(params, lr=lr) |
|
|
return opt |
|
|
|
|
|
|
|
|
|
|
|
|