|
|
from typing import Optional, Tuple, Union, Dict |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
|
|
|
from .vae import Encoder, Decoder |
|
|
from ..model_utils.distributions import DiagonalGaussianDistribution |
|
|
|
|
|
|
|
|
class AutoencoderKL(nn.Module): |
|
|
r"""Variational Autoencoder (VAE) model with KL loss from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma |
|
|
and Max Welling. |
|
|
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library |
|
|
implements for all the model (such as downloading or saving, etc.) |
|
|
|
|
|
Parameters: |
|
|
in_channels (int, *optional*, defaults to 3): Number of channels in the input image. |
|
|
out_channels (int, *optional*, defaults to 3): Number of channels in the output. |
|
|
down_block_types (`Tuple[str]`, *optional*, defaults to : |
|
|
obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types. |
|
|
up_block_types (`Tuple[str]`, *optional*, defaults to : |
|
|
obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types. |
|
|
block_out_channels (`Tuple[int]`, *optional*, defaults to : |
|
|
obj:`(64,)`): Tuple of block output channels. |
|
|
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. |
|
|
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space. |
|
|
sample_size (`int`, *optional*, defaults to `32`): TODO |
|
|
scaling_factor (`float`, *optional*, defaults to 0.18215): |
|
|
The component-wise standard deviation of the trained latent space computed using the first batch of the |
|
|
training set. This is used to scale the latent space to have unit variance when training the diffusion |
|
|
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the |
|
|
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 |
|
|
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image |
|
|
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
in_channels: int = 3, |
|
|
out_channels: int = 3, |
|
|
down_block_types: Tuple[str] = ("DownEncoderBlock2D",), |
|
|
up_block_types: Tuple[str] = ("UpDecoderBlock2D",), |
|
|
block_out_channels: Tuple[int] = (64,), |
|
|
layers_per_block: int = 1, |
|
|
act_fn: str = "silu", |
|
|
latent_channels: int = 4, |
|
|
norm_num_groups: int = 32, |
|
|
sample_size: int = 32, |
|
|
scaling_factor: float = 0.18215, |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
|
|
|
self.encoder = Encoder( |
|
|
in_channels=in_channels, |
|
|
out_channels=latent_channels, |
|
|
down_block_types=down_block_types, |
|
|
block_out_channels=block_out_channels, |
|
|
layers_per_block=layers_per_block, |
|
|
act_fn=act_fn, |
|
|
norm_num_groups=norm_num_groups, |
|
|
double_z=True, |
|
|
) |
|
|
|
|
|
|
|
|
self.decoder = Decoder( |
|
|
in_channels=latent_channels, |
|
|
out_channels=out_channels, |
|
|
up_block_types=up_block_types, |
|
|
block_out_channels=block_out_channels, |
|
|
layers_per_block=layers_per_block, |
|
|
norm_num_groups=norm_num_groups, |
|
|
act_fn=act_fn, |
|
|
) |
|
|
|
|
|
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) |
|
|
self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1) |
|
|
self.use_slicing = False |
|
|
|
|
|
def encode(self, x: torch.FloatTensor) -> DiagonalGaussianDistribution: |
|
|
h = self.encoder(x) |
|
|
moments = self.quant_conv(h) |
|
|
posterior = DiagonalGaussianDistribution(moments) |
|
|
return posterior |
|
|
|
|
|
def _decode(self, z: torch.FloatTensor) -> torch.Tensor: |
|
|
z = self.post_quant_conv(z) |
|
|
dec = self.decoder(z) |
|
|
return dec |
|
|
|
|
|
def enable_slicing(self): |
|
|
r""" |
|
|
Enable sliced VAE decoding. |
|
|
|
|
|
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several |
|
|
steps. This is useful to save some memory and allow larger batch sizes. |
|
|
""" |
|
|
self.use_slicing = True |
|
|
|
|
|
def disable_slicing(self): |
|
|
r""" |
|
|
Disable sliced VAE decoding. If `enable_slicing` was previously invoked, this method will go back to computing |
|
|
decoding in one step. |
|
|
""" |
|
|
self.use_slicing = False |
|
|
|
|
|
def decode(self, z: torch.FloatTensor) -> torch.Tensor: |
|
|
if self.use_slicing and z.shape[0] > 1: |
|
|
decoded_slices = [self._decode(z_slice) for z_slice in z.split(1)] |
|
|
decoded = torch.cat(decoded_slices) |
|
|
else: |
|
|
decoded = self._decode(z) |
|
|
return decoded |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
sample: torch.FloatTensor, |
|
|
sample_posterior: bool = False, |
|
|
return_posterior: bool = False, |
|
|
generator: Optional[torch.Generator] = None, |
|
|
) -> torch.FloatTensor: |
|
|
r""" |
|
|
Args: |
|
|
sample (`torch.FloatTensor`): Input sample. |
|
|
sample_posterior (`bool`, *optional*, defaults to `False`): |
|
|
Whether to sample from the posterior. |
|
|
return_posterior (`bool`, *optional*, defaults to `False`): |
|
|
Whether or not to return `posterior` along with `dec` for calculating the training loss. |
|
|
""" |
|
|
x = sample |
|
|
posterior = self.encode(x) |
|
|
if sample_posterior: |
|
|
z = posterior.sample(generator=generator) |
|
|
else: |
|
|
z = posterior.mode() |
|
|
dec = self.decode(z) |
|
|
if return_posterior: |
|
|
return dec, posterior |
|
|
else: |
|
|
return dec |
|
|
|