Built with Axolotl

See axolotl config

axolotl version: 0.13.0.dev0

adapter: qlora
base_model: Qwen/Qwen3-4B
bf16: false
dataset_prepared_path: null
datasets:
- path: zypchn/MedQuAD-TR-alpaca
  type: alpaca
debug: null
deepspeed: null
early_stopping_patience: null
eval_steps: 0.01
flash_attention: null
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: false
hub_model_id: TurkishMedQwen3-4B-v1
is_llama_derived_model: false
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules: null
lr_scheduler: cosine
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 5
optimizer: paged_adamw_32bit
output_dir: ./qlora-out
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
save_steps: null
save_strategy: epoch
sequence_len: 4096
special_tokens:
  eos_token: <|im_end|>
  pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: Qwen2Tokenizer
train_on_inputs: false
val_set_size: 0.02
wandb_entity: null
wandb_log_model: null
wandb_project: null
wandb_run_id: null
wandb_watch: null
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null

TurkishMedQwen3-4B-v1

This model is a fine-tuned version of Qwen/Qwen3-4B on the zypchn/MedQuAD-TR-alpaca dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4742
  • Memory/max Mem Active(gib): 18.36
  • Memory/max Mem Allocated(gib): 18.36
  • Memory/device Mem Reserved(gib): 21.79

Model description

More information needed

Intended uses & limitations

Intended Use: Medical Question-Answering
Limitations: Please be aware that the model may not generate well for some instances due to the quality of the train dataset.

Training and evaluation data

Real patient-doctor interactions scraped from a website. These QA pairs were then re-constructed to Alpaca format.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.PAGED_ADAMW with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 530
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Mem Active(gib) Mem Allocated(gib) Mem Reserved(gib)
No log 0 0 4.6851 14.51 14.51 15.64
3.8213 0.2243 24 3.9841 18.36 18.36 21.79
2.8934 0.4486 48 3.0245 18.36 18.36 21.79
2.4021 0.6729 72 2.2597 18.36 18.36 21.79
1.7734 0.8972 96 1.8842 18.36 18.36 21.79
1.6769 1.1308 120 1.7202 18.36 18.36 21.79
1.6458 1.3551 144 1.6444 18.36 18.36 21.79
1.5338 1.5794 168 1.5903 18.36 18.36 21.79
1.5638 1.8037 192 1.5541 18.36 18.36 21.79
1.3773 2.0374 216 1.5338 18.36 18.36 21.79
1.4174 2.2617 240 1.5257 18.36 18.36 21.79
1.4269 2.4860 264 1.5171 18.36 18.36 21.79
1.3517 2.7103 288 1.4938 18.36 18.36 21.79
1.2708 2.9346 312 1.4792 18.36 18.36 21.79
1.0778 3.1682 336 1.4886 18.36 18.36 21.79
1.2576 3.3925 360 1.4828 18.36 18.36 21.79
1.3479 3.6168 384 1.4776 18.36 18.36 21.79
1.2556 3.8411 408 1.4704 18.36 18.36 21.79
1.108 4.0654 432 1.4710 18.36 18.36 21.79
1.2222 4.2897 456 1.4744 18.36 18.36 21.79
1.1457 4.5140 480 1.4743 18.36 18.36 21.79
1.1319 4.7383 504 1.4746 18.36 18.36 21.79
1.3381 4.9626 528 1.4742 18.36 18.36 21.79

Framework versions

  • PEFT 0.17.1
  • Transformers 4.55.3
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
4
Safetensors
Model size
4B params
Tensor type
F16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for zypchn/TurkishMedQwen3-4B-v1

Base model

Qwen/Qwen3-4B-Base
Finetuned
Qwen/Qwen3-4B
Adapter
(107)
this model
Adapters
1 model

Collection including zypchn/TurkishMedQwen3-4B-v1