legalbert-ner-finetuned

This model is a fine-tuned version of casehold/legalbert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8558
  • Precision: 0.2266
  • Recall: 0.2907
  • F1-score: 0.2531

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1-score
No log 1.0 43 2.0326 0.0 0.0 0.0
No log 2.0 86 1.4580 0.0898 0.0447 0.0523
No log 3.0 129 1.0766 0.2122 0.2013 0.1871
No log 4.0 172 0.9024 0.2275 0.2843 0.2495
No log 5.0 215 0.8558 0.2266 0.2907 0.2531

Framework versions

  • Transformers 4.56.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month
95
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for 0Mayank0/legalbert-ner-finetuned

Base model

casehold/legalbert
Finetuned
(1)
this model

Evaluation results