legalbert-ner-finetuned
This model is a fine-tuned version of casehold/legalbert on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8558
- Precision: 0.2266
- Recall: 0.2907
- F1-score: 0.2531
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1-score |
|---|---|---|---|---|---|---|
| No log | 1.0 | 43 | 2.0326 | 0.0 | 0.0 | 0.0 |
| No log | 2.0 | 86 | 1.4580 | 0.0898 | 0.0447 | 0.0523 |
| No log | 3.0 | 129 | 1.0766 | 0.2122 | 0.2013 | 0.1871 |
| No log | 4.0 | 172 | 0.9024 | 0.2275 | 0.2843 | 0.2495 |
| No log | 5.0 | 215 | 0.8558 | 0.2266 | 0.2907 | 0.2531 |
Framework versions
- Transformers 4.56.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 95
Model tree for 0Mayank0/legalbert-ner-finetuned
Base model
casehold/legalbert