BiMediX: Bilingual Medical Mixture of Experts LLM
Paper
•
2402.13253
•
Published
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "BiMediX/BiMediX-Ara"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
text = "مرحبًا بيميديكس! لقد كنت أعاني من التعب المتزايد في الأسبوع الماضي."
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=500)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
| Model | CKG | CBio | CMed | MedGen | ProMed | Ana | MedMCQA | MedQA | PubmedQA | AVG |
|---|---|---|---|---|---|---|---|---|---|---|
| Jais-30B | 52.1 | 50.7 | 40.5 | 49.0 | 39.3 | 43.0 | 37.0 | 28.8 | 74.6 | 46.1 |
| BiMediX (Arabic) | 60.0 | 54.9 | 55.5 | 58.0 | 58.1 | 49.6 | 46.0 | 40.2 | 76.6 | 55.4 |
| BiMediX (Bilingual) | 63.8 | 57.6 | 52.6 | 64.0 | 52.9 | 50.4 | 49.1 | 47.3 | 78.4 | 56.5 |
Sara Pieri, Sahal Shaji Mullappilly, Fahad Shahbaz Khan, Rao Muhammad Anwer Salman Khan, Timothy Baldwin, Hisham Cholakkal
Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI)