Feature Extraction
Transformers
Safetensors
English
GAR
custom_code
GAR-1B / processing_gar.py
HaochenWang's picture
Upload folder using huggingface_hub
94d9370 verified
# coding=utf-8
# Copyright 2025 Meta Platforms, Inc. and the HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for PerceptionLM.
"""
from typing import Iterable, Union
import numpy as np
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput, get_image_size, to_numpy_array
from transformers.processing_utils import (
MultiModalData,
ProcessingKwargs,
ProcessorMixin,
Unpack,
)
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.utils import logging
from transformers.video_utils import VideoInput
from transformers.image_utils import PILImageResampling
from .image_processing_perception_lm_fast import PerceptionLMImageProcessorFast
from transformers import AutoTokenizer, AutoProcessor, AutoImageProcessor
logger = logging.get_logger(__name__)
class PerceptionLMProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
"return_mm_token_type_ids": False,
},
}
class GARPerceptionLMProcessor(ProcessorMixin):
r"""
Constructs a PerceptionLM processor which wraps a PerceptionLM image processor, a PerceptionLM video processor, and a tokenizer into a single processor.
[`PerceptionLMProcessor`] offers all the functionalities of [`PerceptionLMImageProcessorFast`], [`PerceptionLMVideoProcessor`], and the tokenizer (e.g. [`LlamaTokenizerFast`]). See the
[`~PerceptionLMProcessor.__call__`] and [`~PerceptionLMProcessor.decode`] for more information.
Args:
video_processor ([`PerceptionLMVideoProcessor`], *optional*):
The video processor to process video inputs.
image_processor ([`PerceptionLMImageProcessorFast`], *optional*):
The image processor to process image inputs.
tokenizer ([`LlamaTokenizerFast`] or similar, *optional*):
The tokenizer to process text inputs.
patch_size (`int`, *optional*):
Patch size from the vision tower.
chat_template (`str`, *optional*):
A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string.
pooling_ratio (`int`, *optional*, defaults to 2):
Pooling ratio for vision tokens. If not 1, 2D adaptive pooling is applied over projected vision tokens.
"""
attributes = ["video_processor", "image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
video_processor_class = "AutoVideoProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
video_processor=None,
image_processor=None,
tokenizer=None,
patch_size=None,
chat_template=None,
pooling_ratio=2,
**kwargs,
):
self.patch_size = patch_size
self.pooling_ratio = pooling_ratio
self.image_token = tokenizer.image_token
self.video_token = tokenizer.video_token
self.image_token_id = tokenizer.image_token_id
self.video_token_id = tokenizer.video_token_id
super().__init__(
video_processor, image_processor, tokenizer, chat_template=chat_template,
)
def __call__(
self,
images: ImageInput = None,
visual_prompts: ImageInput = None,
text: Union[
TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]
] = None,
audio=None,
videos: VideoInput = None,
**kwargs: Unpack[PerceptionLMProcessorKwargs],
) -> BatchFeature:
"""
Prepares a batch containing one or more sequences of text and/or images and/or videos.
If `text` is provided, it is tokenized using the tokenizer.
If `images` is provided, they are processed using the image processor.
If `videos` is provided, they are processed using the video processor.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`, *optional*):
The image or batch of images to be processed. Each image can be a PIL image, NumPy array, or PyTorch tensor.
Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, *optional*):
The sequence or batch of sequences to be tokenized. Each sequence can be a string.
videos (`Any`, *optional*):
The video or batch of videos to be processed.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is provided.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is provided).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is provided.
- **pixel_values_videos** -- Video pixel values to be fed to a model. Returned when `videos` is provided.
"""
if text is None:
raise ValueError(
"You have to specify at least `text` input. Optionally, you can also specify `images` or `videos`."
)
output_kwargs = self._merge_kwargs(
PerceptionLMProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if images is not None:
image_inputs = self.image_processor(
images=images, **output_kwargs["images_kwargs"]
)
else:
image_inputs = {}
if visual_prompts is not None:
visual_prompts_inputs = self.image_processor(
images=visual_prompts, **output_kwargs["images_kwargs"], resample=PILImageResampling.NEAREST
)
image_inputs["mask_values"] = visual_prompts_inputs["pixel_values"]
else:
image_inputs["mask_values"] = None
if videos is not None:
videos_inputs = self.video_processor(
videos, **output_kwargs["videos_kwargs"]
)
else:
videos_inputs = {}
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError(
"Invalid input text. Please provide a string, or a list of strings"
)
# try to expand inputs in processing if we have the necessary parts
prompt_strings = []
pixel_values = iter(image_inputs.get("pixel_values", []))
pixel_values_videos = iter(videos_inputs.get("pixel_values_videos", []))
for sample in text:
# Replace the media token with the expanded media token sequence
sample = self._expand_media_tokens(
sample, self.tokenizer.image_token, pixel_values
)
sample = self._expand_media_tokens(
sample, self.tokenizer.video_token, pixel_values_videos
)
prompt_strings.append(sample)
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
return_mm_token_type_ids = output_kwargs["text_kwargs"].pop(
"return_mm_token_type_ids", False
)
text_inputs = self.tokenizer(
prompt_strings, **output_kwargs["text_kwargs"], return_tensors=None
)
self._check_special_mm_tokens(
prompt_strings, text_inputs, modalities=["image", "video"]
)
if return_mm_token_type_ids:
array_ids = np.array(text_inputs["input_ids"])
mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
mm_token_type_ids[array_ids == self.image_token_id] = 1
text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()
return BatchFeature(
data={**text_inputs, **image_inputs, **videos_inputs},
tensor_type=return_tensors,
)
def _expand_media_tokens(self, sample, media_token: str, media_iter: Iterable):
media_count = sample.count(media_token)
if media_count > 0:
media_list = [next(media_iter) for _ in range(media_count)]
sample_splits = sample.split(media_token)
media_token_list = []
for media in media_list:
height, width = get_image_size(to_numpy_array(media))
num_tiles = media.shape[0]
num_media_tokens = (
(height // self.patch_size // self.pooling_ratio)
* (width // self.patch_size // self.pooling_ratio)
* num_tiles
)
media_token_list.append(num_media_tokens)
sample = ""
for i, num_media_tokens in enumerate(media_token_list):
sample += sample_splits[i]
sample += media_token * num_media_tokens
sample += sample_splits[-1]
return sample
def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs):
"""
Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
Args:
image_sizes (`list[list[int]]`, *optional*):
The input sizes formatted as (height, width) per each image.
Returns:
`MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
input modalities, along with other useful data.
"""
vision_data = {}
if image_sizes is not None:
images_kwargs = PerceptionLMProcessorKwargs._defaults.get(
"images_kwargs", {}
)
images_kwargs.update(kwargs)
tile_size = (
images_kwargs.get("tile_size", None) or self.image_processor.tile_size
)
num_image_tokens = []
num_image_patches = []
for height, width in image_sizes:
if self.image_processor.vision_input_type == "thumb+tile":
aspect_ratio = self.image_processor._fit_image_to_canvas(
img_width=width, img_height=height, tile_size=tile_size
)
if aspect_ratio is None:
aspect_ratio = self.image_processor._find_closest_aspect_ratio(
img_width=width, img_height=height, tile_size=tile_size
)
num_tiles = (
aspect_ratio[0] * aspect_ratio[1] + 1
) # base image and tiles
else:
num_tiles = 1
num_image_tokens.append(
(tile_size // self.patch_size // self.pooling_ratio)
* (tile_size // self.patch_size // self.pooling_ratio)
* num_tiles
)
num_image_patches.append(num_tiles)
vision_data.update(
{
"num_image_tokens": num_image_tokens,
"num_image_patches": num_image_patches,
}
)
return MultiModalData(**vision_data)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PerceptionLMTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PerceptionLMTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
AutoProcessor.register("GARPerceptionLMProcessor", GARPerceptionLMProcessor)
AutoImageProcessor.register(
"GARPerceptionLMImageProcessorFast",
slow_image_processor_class=None,
fast_image_processor_class=PerceptionLMImageProcessorFast
)
__all__ = ["GARPerceptionLMProcessor"]