Vayne-V1 / README.md
PoSTMEDIA's picture
Update README.md
9977284 verified
---
base_model: openai/gpt-oss-20b
base_model_relation: merge
library_name: transformers
pipeline_tag: text-generation
tags:
- sft
- transformers
- trl
license: apache-2.0
language:
- en
- ko
---
# Vayne-V1
**Vayne-V1** is a **compact, efficient, and high-performance enterprise LLM** optimized for **AI agent frameworks**, **MCP-based tool orchestration**, **Retrieval-Augmented Generation (RAG) pipelines**, and **secure on-premise deployment**.
- ✅ Lightweight architecture for fast inference and low resource usage
- ⚙️ Seamless integration with modern AI agent frameworks
- 🔗 Built-in compatibility for MCP-based multi-tool orchestration
- 🔍 Optimized for enterprise-grade RAG systems
- 🛡️ Secure deployment in private or regulated environments
---
## Key Design Principles
| Feature | Description |
|----------|-------------|
| 🔐 Private AI Ready | Deploy fully **on-premise** or in **air-gapped** secure environments |
| ⚡ Lightweight Inference | **Single-GPU optimized** architecture for fast and cost-efficient deployment |
| 🧠 Enterprise Reasoning | Structured output and instruction-following for **business automation** |
| 🔧 Agent & MCP Native | Built for **AI agent frameworks** and **MCP-based tool orchestration** |
| 🔍 RAG Enhanced | Optimized for **retrieval workflows** with vector DBs (FAISS, Milvus, pgvector, etc.) |
---
## Model Architecture & Training
| Specification | Details |
|---------------|---------|
| 🧬 Base Model | GPT-OSS-20B |
| 🔢 Parameters | ~20B |
| 🎯 Precision | FP16 / BF16 |
| 🧱 Architecture | Decoder-only Transformer |
| 📏 Context Length | 4K tokens |
| ⚡ Inference | Single / Multi-GPU compatible |
### Training Data
Fine-tuned using supervised instruction tuning (SFT) on:
- Enterprise QA datasets
- Task reasoning + tool usage instructions
- RAG-style retrieval prompts
- Business reports & structured communication
- Korean–English bilingual QA and translation
- Synthetic instructions with safety curation
---
## Secure On-Premise Deployment
Vayne-V1 is built for **enterprise AI inside your firewall**.
✅ No external API dependency
✅ Compatible with **offline environments**
✅ Proven for secure deployments
---
## MCP (Model Context Protocol) Integration
Vayne-V1 supports **MCP-based agent tooling**, making it easy to integrate tool-use AI.
Works seamlessly with:
* Claude MCP-compatible agent systems
* Local agent runtimes
* JSON structured execution
---
## RAG Compatibility
Designed for **hybrid reasoning + retrieval**.
✅ Works with FAISS, Chroma, Elasticsearch
✅ Handles long-context document QA
✅ Ideal for enterprise knowledge bases
---
## Quick Start
```bash
pip install transformers peft accelerate bitsandbytes
```
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "PoSTMEDIA/Vayne-V1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto"
)
prompt = "Explain the benefits of private AI for enterprise security."
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
---
## Use Cases
✅ Internal enterprise AI assistant
✅ Private AI document analysis
✅ Business writing (reports, proposals, strategy)
✅ AI automation agents
✅ Secure RAG search systems
---
## Safety & Limitations
* Not intended for medical, legal, or financial decision-making
* May occasionally generate hallucinations
* Use human validation for critical outputs
* Recommended: enable output guardrails for production
---
## Citation
```bibtex
@misc{vayne2025,
title={Vayne-V1: Private On-Premise LLM Optimized for Agents and RAG},
author={PoSTMEDIA AI Lab},
year={2025},
publisher={Hugging Face}
}
```
---
## Contact
**PoSTMEDIA AI Lab**
📧 [dev.postmedia@gmail.com](mailto:dev.postmedia@gmail.com)
🌐 [https://postmedia.ai](https://postmedia.ai)
🌐 [https://postmedia.co.kr](https://postmedia.co.kr)
---