timesformer_wlasl_100_20ep_coR_

This model is a fine-tuned version of facebook/timesformer-base-finetuned-k400 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4422
  • Accuracy: 0.6657

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 3600
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
18.516 0.05 180 4.3268 0.0680
14.6282 1.0499 360 3.2382 0.3077
9.1983 2.0499 540 2.5109 0.4379
5.217 3.0501 721 2.0461 0.5148
2.6858 4.05 901 1.7717 0.5769
1.2884 5.0499 1081 1.6758 0.6006
0.6468 6.0499 1261 1.5235 0.6213
0.3398 7.0501 1442 1.4498 0.6272
0.1804 8.05 1622 1.4702 0.6272
0.1119 9.0499 1802 1.4163 0.6302
0.079 10.0499 1982 1.4269 0.6538
0.0686 11.0501 2163 1.4097 0.6568
0.0626 12.05 2343 1.3878 0.6657
0.0485 13.0499 2523 1.4528 0.6686
0.0613 14.0499 2703 1.4348 0.6627
0.053 15.0501 2884 1.4080 0.6716
0.0435 16.05 3064 1.4331 0.6627
0.029 17.0499 3244 1.4446 0.6568
0.0292 18.0499 3424 1.4439 0.6686
0.0199 19.0487 3600 1.4422 0.6657

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
104
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Shawon16/timesformer_wlasl_100_20ep_coR_

Finetuned
(80)
this model

Evaluation results