TX-8G

Multi-modal AI model optimized for 8GB systems. Part of the TARX model family.

基于通义千问 (Qwen) 的多模态AI模型,专为8GB系统优化。

Specifications

  • Parameters: ~8B
  • Size: 5.03 GB (Q4_K_M quantization)
  • Min RAM: 8GB
  • Capabilities: Text, vision, code
  • Format: GGUF (llama.cpp/Ollama compatible)
  • Quantization: Q4_K_M (balanced quality/size)

规格说明

  • 参数量: ~80亿
  • 大小: 5.03 GB (Q4_K_M 量化)
  • 最小内存: 8GB
  • 能力: 文本、视觉、代码
  • 格式: GGUF (兼容 llama.cpp/Ollama)
  • 量化: Q4_K_M (质量与大小平衡)

Performance

Optimized for systems with 8GB RAM. Provides efficient inference with good quality for general-purpose tasks including text generation, vision understanding, and code completion.

性能优化针对8GB内存系统,在文本生成、视觉理解和代码补全等通用任务中提供高效推理和良好质量。

Usage

Automatic (via TARX)

TARX automatically detects your system hardware and downloads the appropriate model variant.

# TARX will auto-download and configure TX-8G on 8GB systems
tarx-local

Manual (Ollama)

# Download model
wget https://huggingface.co/Tarxxxxxx/TX-8G/resolve/main/tx-8g.gguf

# Create Modelfile
cat > Modelfile << 'MODELFILE'
FROM ./tx-8g.gguf
PARAMETER temperature 0.7
PARAMETER num_ctx 8192
PARAMETER stop "<|im_end|>"
PARAMETER stop "<|im_start|>"
MODELFILE

# Import to Ollama
ollama create tx-8g -f Modelfile

# Run
ollama run tx-8g

Manual (llama.cpp)

# Download model
wget https://huggingface.co/Tarxxxxxx/TX-8G/resolve/main/tx-8g.gguf

# Run with llama.cpp
./llama-cli -m tx-8g.gguf -p "Hello, how can I help you today?" --ctx-size 8192

Model Details

This model is based on Qwen2-VL-7B-Instruct, a state-of-the-art vision-language model developed by Alibaba Cloud's Qwen team. Qwen2-VL excels at understanding both images and text, enabling sophisticated multimodal reasoning, visual question answering, and code generation from visual inputs.

该模型基于阿里云通义千问团队开发的 Qwen2-VL-7B-Instruct,这是一个先进的视觉-语言模型。Qwen2-VL 在理解图像和文本方面表现出色,能够进行复杂的多模态推理、视觉问答和从视觉输入生成代码。

Key Features

  • Multimodal understanding (text + vision)
  • Code generation and analysis
  • Long-context reasoning (8K context)
  • Visual question answering
  • Document understanding

主要特性

  • 多模态理解(文本+视觉)
  • 代码生成与分析
  • 长上下文推理(8K上下文)
  • 视觉问答
  • 文档理解

License

Apache 2.0

Attribution

This model is based on Qwen2-VL-7B-Instruct by the Qwen Team at Alibaba Cloud. We are grateful to the Qwen team (@Qwen) for their outstanding work on multimodal language models and for making their research openly available.

本模型基于阿里云通义千问团队的 Qwen2-VL-7B-Instruct。我们感谢通义千问团队 (@Qwen) 在多模态语言模型方面的杰出工作,以及他们将研究成果公开分享。

Original Model

Modifications

  • Quantized to Q4_K_M GGUF format for efficient deployment
  • Optimized for 8GB RAM systems
  • Integrated into TARX local-first AI platform

Citation

@software{tx-8g,
  title = {TX-8G: Multi-modal AI for 8GB Systems},
  author = {TARX Team},
  year = {2025},
  url = {https://huggingface.co/Tarxxxxxx/TX-8G},
  note = {Based on Qwen2-VL-7B-Instruct by Qwen Team}
}

@article{qwen2vl,
  title={Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution},
  author={Qwen Team},
  journal={arXiv preprint},
  year={2024},
  url={https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct}
}

特别感谢阿里云通义千问团队为开源AI社区做出的贡献!

Special thanks to the Alibaba Cloud Qwen Team for their contributions to the open-source AI community!

Downloads last month
104
GGUF
Hardware compatibility
Log In to view the estimation

We're not able to determine the quantization variants.

Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Tarxxxxxx/TX-8G

Base model

Qwen/Qwen2-VL-7B
Quantized
(66)
this model