TX-8G
Multi-modal AI model optimized for 8GB systems. Part of the TARX model family.
基于通义千问 (Qwen) 的多模态AI模型,专为8GB系统优化。
Specifications
- Parameters: ~8B
- Size: 5.03 GB (Q4_K_M quantization)
- Min RAM: 8GB
- Capabilities: Text, vision, code
- Format: GGUF (llama.cpp/Ollama compatible)
- Quantization: Q4_K_M (balanced quality/size)
规格说明
- 参数量: ~80亿
- 大小: 5.03 GB (Q4_K_M 量化)
- 最小内存: 8GB
- 能力: 文本、视觉、代码
- 格式: GGUF (兼容 llama.cpp/Ollama)
- 量化: Q4_K_M (质量与大小平衡)
Performance
Optimized for systems with 8GB RAM. Provides efficient inference with good quality for general-purpose tasks including text generation, vision understanding, and code completion.
性能优化针对8GB内存系统,在文本生成、视觉理解和代码补全等通用任务中提供高效推理和良好质量。
Usage
Automatic (via TARX)
TARX automatically detects your system hardware and downloads the appropriate model variant.
# TARX will auto-download and configure TX-8G on 8GB systems
tarx-local
Manual (Ollama)
# Download model
wget https://huggingface.co/Tarxxxxxx/TX-8G/resolve/main/tx-8g.gguf
# Create Modelfile
cat > Modelfile << 'MODELFILE'
FROM ./tx-8g.gguf
PARAMETER temperature 0.7
PARAMETER num_ctx 8192
PARAMETER stop "<|im_end|>"
PARAMETER stop "<|im_start|>"
MODELFILE
# Import to Ollama
ollama create tx-8g -f Modelfile
# Run
ollama run tx-8g
Manual (llama.cpp)
# Download model
wget https://huggingface.co/Tarxxxxxx/TX-8G/resolve/main/tx-8g.gguf
# Run with llama.cpp
./llama-cli -m tx-8g.gguf -p "Hello, how can I help you today?" --ctx-size 8192
Model Details
This model is based on Qwen2-VL-7B-Instruct, a state-of-the-art vision-language model developed by Alibaba Cloud's Qwen team. Qwen2-VL excels at understanding both images and text, enabling sophisticated multimodal reasoning, visual question answering, and code generation from visual inputs.
该模型基于阿里云通义千问团队开发的 Qwen2-VL-7B-Instruct,这是一个先进的视觉-语言模型。Qwen2-VL 在理解图像和文本方面表现出色,能够进行复杂的多模态推理、视觉问答和从视觉输入生成代码。
Key Features
- Multimodal understanding (text + vision)
- Code generation and analysis
- Long-context reasoning (8K context)
- Visual question answering
- Document understanding
主要特性
- 多模态理解(文本+视觉)
- 代码生成与分析
- 长上下文推理(8K上下文)
- 视觉问答
- 文档理解
License
Apache 2.0
Attribution
This model is based on Qwen2-VL-7B-Instruct by the Qwen Team at Alibaba Cloud. We are grateful to the Qwen team (@Qwen) for their outstanding work on multimodal language models and for making their research openly available.
本模型基于阿里云通义千问团队的 Qwen2-VL-7B-Instruct。我们感谢通义千问团队 (@Qwen) 在多模态语言模型方面的杰出工作,以及他们将研究成果公开分享。
Original Model
- Name: Qwen2-VL-7B-Instruct
- Organization: Qwen Team, Alibaba Cloud
- HuggingFace: https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
- License: Apache 2.0
Modifications
- Quantized to Q4_K_M GGUF format for efficient deployment
- Optimized for 8GB RAM systems
- Integrated into TARX local-first AI platform
Citation
@software{tx-8g,
title = {TX-8G: Multi-modal AI for 8GB Systems},
author = {TARX Team},
year = {2025},
url = {https://huggingface.co/Tarxxxxxx/TX-8G},
note = {Based on Qwen2-VL-7B-Instruct by Qwen Team}
}
@article{qwen2vl,
title={Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution},
author={Qwen Team},
journal={arXiv preprint},
year={2024},
url={https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct}
}
特别感谢阿里云通义千问团队为开源AI社区做出的贡献!
Special thanks to the Alibaba Cloud Qwen Team for their contributions to the open-source AI community!
- Downloads last month
- 104
We're not able to determine the quantization variants.