SentenceTransformer based on microsoft/deberta-v3-xsmall
This is a sentence-transformers model finetuned from microsoft/deberta-v3-xsmall on the stanfordnlp/snli dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/deberta-v3-xsmall
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("bobox/DeBERTaV3-xSmall-SentenceTransformer-0.03")
sentences = [
'in each square',
'It is widespread.',
'A young girl flips an omelet.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.7972 |
| spearman_cosine |
0.807 |
| pearson_manhattan |
0.8079 |
| spearman_manhattan |
0.8072 |
| pearson_euclidean |
0.8084 |
| spearman_euclidean |
0.8073 |
| pearson_dot |
0.7029 |
| spearman_dot |
0.6909 |
| pearson_max |
0.8084 |
| spearman_max |
0.8073 |
Binary Classification
| Metric |
Value |
| cosine_accuracy |
0.6772 |
| cosine_accuracy_threshold |
0.7285 |
| cosine_f1 |
0.7187 |
| cosine_f1_threshold |
0.6111 |
| cosine_precision |
0.611 |
| cosine_recall |
0.8724 |
| cosine_ap |
0.7392 |
| dot_accuracy |
0.6383 |
| dot_accuracy_threshold |
228.4041 |
| dot_f1 |
0.7068 |
| dot_f1_threshold |
177.3942 |
| dot_precision |
0.5811 |
| dot_recall |
0.9017 |
| dot_ap |
0.6904 |
| manhattan_accuracy |
0.6635 |
| manhattan_accuracy_threshold |
174.6275 |
| manhattan_f1 |
0.7054 |
| manhattan_f1_threshold |
232.6788 |
| manhattan_precision |
0.5772 |
| manhattan_recall |
0.907 |
| manhattan_ap |
0.7282 |
| euclidean_accuracy |
0.6651 |
| euclidean_accuracy_threshold |
13.4225 |
| euclidean_f1 |
0.7068 |
| euclidean_f1_threshold |
17.6348 |
| euclidean_precision |
0.5756 |
| euclidean_recall |
0.9154 |
| euclidean_ap |
0.7303 |
| max_accuracy |
0.6772 |
| max_accuracy_threshold |
228.4041 |
| max_f1 |
0.7187 |
| max_f1_threshold |
232.6788 |
| max_precision |
0.611 |
| max_recall |
0.9154 |
| max_ap |
0.7392 |
Training Details
Training Dataset
stanfordnlp/snli
Evaluation Dataset
sentence-transformers/stsb
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 64
per_device_eval_batch_size: 64
learning_rate: 7.5e-05
num_train_epochs: 2
warmup_ratio: 0.25
save_safetensors: False
fp16: True
push_to_hub: True
hub_model_id: bobox/DeBERTaV3-xSmall-SentenceTransformer-0.03n
hub_strategy: checkpoint
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 64
per_device_eval_batch_size: 64
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
learning_rate: 7.5e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 2
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.25
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: False
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: True
resume_from_checkpoint: None
hub_model_id: bobox/DeBERTaV3-xSmall-SentenceTransformer-0.03n
hub_strategy: checkpoint
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
loss |
max_ap |
sts-dev_spearman_cosine |
| None |
0 |
- |
3.7624 |
0.5721 |
0.4168 |
| 0.0501 |
246 |
3.3825 |
- |
- |
- |
| 0.1002 |
492 |
1.8307 |
- |
- |
- |
| 0.1500 |
737 |
- |
1.0084 |
0.7024 |
- |
| 0.1502 |
738 |
1.055 |
- |
- |
- |
| 0.2003 |
984 |
0.7961 |
- |
- |
- |
| 0.2504 |
1230 |
0.6859 |
- |
- |
- |
| 0.3001 |
1474 |
- |
0.7410 |
0.7191 |
- |
| 0.3005 |
1476 |
0.5914 |
- |
- |
- |
| 0.3506 |
1722 |
0.5324 |
- |
- |
- |
| 0.4007 |
1968 |
0.5077 |
- |
- |
- |
| 0.4501 |
2211 |
- |
0.6152 |
0.7144 |
- |
| 0.4507 |
2214 |
0.4647 |
- |
- |
- |
| 0.5008 |
2460 |
0.4443 |
- |
- |
- |
| 0.5509 |
2706 |
0.4169 |
- |
- |
- |
| 0.6002 |
2948 |
- |
0.5820 |
0.7207 |
- |
| 0.6010 |
2952 |
0.3831 |
- |
- |
- |
| 0.6511 |
3198 |
0.393 |
- |
- |
- |
| 0.7011 |
3444 |
0.3654 |
- |
- |
- |
| 0.7502 |
3685 |
- |
0.5284 |
0.7264 |
- |
| 0.7512 |
3690 |
0.344 |
- |
- |
- |
| 0.8013 |
3936 |
0.3336 |
- |
- |
- |
| 0.8514 |
4182 |
0.3382 |
- |
- |
- |
| 0.9002 |
4422 |
- |
0.4911 |
0.7294 |
- |
| 0.9015 |
4428 |
0.3182 |
- |
- |
- |
| 0.9515 |
4674 |
0.3213 |
- |
- |
- |
| 1.0016 |
4920 |
0.3032 |
- |
- |
- |
| 1.0503 |
5159 |
- |
0.4777 |
0.7325 |
- |
| 1.0517 |
5166 |
0.2526 |
- |
- |
- |
| 1.1018 |
5412 |
0.2652 |
- |
- |
- |
| 1.1519 |
5658 |
0.2538 |
- |
- |
- |
| 1.2003 |
5896 |
- |
0.4569 |
0.7331 |
- |
| 1.2020 |
5904 |
0.2454 |
- |
- |
- |
| 1.2520 |
6150 |
0.2528 |
- |
- |
- |
| 1.3021 |
6396 |
0.2448 |
- |
- |
- |
| 1.3504 |
6633 |
- |
0.4334 |
0.7370 |
- |
| 1.3522 |
6642 |
0.2282 |
- |
- |
- |
| 1.4023 |
6888 |
0.2295 |
- |
- |
- |
| 1.4524 |
7134 |
0.2313 |
- |
- |
- |
| 1.5004 |
7370 |
- |
0.4237 |
0.7342 |
- |
| 1.5024 |
7380 |
0.2218 |
- |
- |
- |
| 1.5525 |
7626 |
0.2246 |
- |
- |
- |
| 1.6026 |
7872 |
0.218 |
- |
- |
- |
| 1.6504 |
8107 |
- |
0.4102 |
0.7388 |
- |
| 1.6527 |
8118 |
0.2095 |
- |
- |
- |
| 1.7028 |
8364 |
0.2114 |
- |
- |
- |
| 1.7529 |
8610 |
0.2063 |
- |
- |
- |
| 1.8005 |
8844 |
- |
0.4075 |
0.7370 |
- |
| 1.8029 |
8856 |
0.1968 |
- |
- |
- |
| 1.8530 |
9102 |
0.2061 |
- |
- |
- |
| 1.9031 |
9348 |
0.2089 |
- |
- |
- |
| 1.9505 |
9581 |
- |
0.3978 |
0.7395 |
- |
| 1.9532 |
9594 |
0.2005 |
- |
- |
- |
| 2.0 |
9824 |
- |
0.3963 |
0.7392 |
- |
| None |
0 |
- |
1.5506 |
- |
0.8070 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}