irplag_unixcoder_ep30_bs16_lr2e-05_l512_s42_ppn_loss
This model is a fine-tuned version of microsoft/unixcoder-base-nine on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0792
- Accuracy: 0.9565
- Recall: 0.9636
- Precision: 0.9815
- F1: 0.9725
- F Beta Score: 0.9691
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | F Beta Score |
|---|---|---|---|---|---|---|---|---|
| 0.7212 | 1.0 | 21 | 0.5773 | 0.8261 | 0.8909 | 0.8909 | 0.8909 | 0.8909 |
| 0.4669 | 2.0 | 42 | 0.3188 | 0.8406 | 0.8 | 1.0 | 0.8889 | 0.8525 |
| 0.1992 | 3.0 | 63 | 0.2318 | 0.9565 | 0.9818 | 0.9643 | 0.9730 | 0.9764 |
| 0.0944 | 4.0 | 84 | 0.2172 | 0.9565 | 0.9818 | 0.9643 | 0.9730 | 0.9764 |
| 0.0882 | 5.0 | 105 | 0.1541 | 0.9855 | 1.0 | 0.9821 | 0.9910 | 0.9944 |
| 0.0177 | 6.0 | 126 | 0.0792 | 0.9565 | 0.9636 | 0.9815 | 0.9725 | 0.9691 |
| 0.0114 | 7.0 | 147 | 0.2376 | 0.9855 | 1.0 | 0.9821 | 0.9910 | 0.9944 |
| 0.0014 | 8.0 | 168 | 0.2135 | 0.9710 | 0.9818 | 0.9818 | 0.9818 | 0.9818 |
| 0.0023 | 9.0 | 189 | 0.1374 | 0.9710 | 0.9818 | 0.9818 | 0.9818 | 0.9818 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.1.0
- Tokenizers 0.21.4
- Downloads last month
- 14
Model tree for buelfhood/irplag_unixcoder_ep30_bs16_lr2e-05_l512_s42_ppn_loss
Base model
microsoft/unixcoder-base-nine