EduardoLawson1 commited on
Commit
1ec64ea
·
verified ·
1 Parent(s): 8236588

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +118 -0
README.md ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - manual
4
+ language_creators:
5
+ - none
6
+ language:
7
+ - en
8
+ license:
9
+ - cc-by-4.0
10
+ multilinguality:
11
+ - monolingual
12
+ pretty_name: Lpipe Dataset
13
+ size_categories:
14
+ - 1K<n<10K
15
+ source_datasets:
16
+ - original
17
+ tags:
18
+ - underwater
19
+ - semantic-segmentation
20
+ - pipelines
21
+ - robotics
22
+ - marine
23
+ - oil-and-gas
24
+ - computer-vision
25
+ task_categories:
26
+ - image-segmentation
27
+ task_ids:
28
+ - semantic-segmentation
29
+ ---
30
+
31
+ # Lpipe Dataset
32
+
33
+ [📄 **DualMatch: A Dual EMA Teacher for Underwater Semi-Supervised Pipeline Segmentation**](http://sibgrapi.sid.inpe.br/col/sid.inpe.br/sibgrapi/2025/09.15.00.38/doc/LawsonSIBGRAPI_2025-1.pdf)
34
+
35
+ The **Lpipe dataset** is an underwater image dataset designed for **semantic segmentation** tasks involving subsea environments.
36
+ It includes manually annotated RGB images containing **pipelines, humans, animals, and robots**.
37
+ The dataset aims to support research in **underwater computer vision**, **autonomous robotics**, and **oil and gas inspection systems**.
38
+
39
+ ---
40
+
41
+ ## Dataset Summary
42
+
43
+ The Lpipe dataset provides **716 underwater images** paired with **716 pixel-level segmentation masks**.
44
+ Each mask is color-coded in RGB, where each color corresponds to one of the four semantic classes:
45
+
46
+ | Class ID | Class Name | Description |
47
+ |-----------|-------------|--------------|
48
+ | 0 | Background | Underwater background and seabed |
49
+ | 1 | Pipeline | Subsea pipeline or tubular structures |
50
+ | 2 | Human | Diver or human presence |
51
+ | 3 | Animal | Marine animals (fish, crustaceans, etc.) |
52
+ | 4 | Robot | Underwater inspection or maintenance robot |
53
+
54
+ This dataset was created to assist in the development and evaluation of **semantic segmentation** models for complex underwater scenarios.
55
+
56
+ ---
57
+
58
+ ## Supported Tasks and Benchmarks
59
+
60
+ The dataset can be used for:
61
+ - **Semantic Segmentation**
62
+ - **Semi-supervised Segmentation** (splits available on GitHub)
63
+ - **Object detection and domain adaptation** in underwater imagery
64
+
65
+ ---
66
+
67
+ ## Dataset Structure
68
+
69
+ Inside the dataset, two folders are provided:
70
+
71
+ Lpipe/
72
+
73
+ - images/ # RGB underwater images (.jpg)
74
+ - masks/ # Segmentation masks (.png, RGB-coded)
75
+
76
+
77
+ Although the dataset on Hugging Face includes only images and masks,
78
+ **official training/validation/test splits** (for semi-supervised learning) are available in the associated GitHub repository:
79
+ 🔗 [https://github.com/EduardoLawson1/DualMatch](https://github.com/EduardoLawson1/DualMatch)
80
+
81
+ ---
82
+
83
+ ## Data Fields
84
+
85
+ | Field | Type | Description |
86
+ |--------|------|-------------|
87
+ | image | `RGB Image (.jpg)` | The original underwater image |
88
+ | mask | `RGB Image (.png)` | Pixel-level color-coded segmentation mask |
89
+
90
+ ---
91
+
92
+ ## Data Splits
93
+
94
+ There are 716 total samples.
95
+ The dataset is not pre-split in the Hugging Face version, but the following splits are defined in the GitHub repository:
96
+ - `train.txt`
97
+ - `val.txt`
98
+ - `test.txt`
99
+ - `unlabeled.txt` (for semi-supervised training)
100
+
101
+ ---
102
+
103
+ ## Licenses
104
+
105
+ This dataset is released under the **Creative Commons Attribution 4.0 International (CC BY 4.0)** license.
106
+ You are free to share, copy, redistribute, adapt, and build upon the material for any purpose, provided that you give proper credit to the original author.
107
+
108
+ ---
109
+
110
+ ## Citation
111
+
112
+ If you use this dataset, please cite the related publication:
113
+
114
+ bibtex
115
+ @article{silvadualmatch,
116
+ title={DualMatch: A Dual EMA Teacher for Underwater Semi-Supervised Pipeline Segmentation},
117
+ author={Silva, Eduardo L and Schein, Tatiana T and Briao, Stephanie L and Anastacio, Gabriel L and Oliveira, Felipe G and Drews-Jr, Paulo LJ}
118
+ }