license: cc-by-nc-4.0
gated: true
extra_gated_prompt: Please provide the required information to access this model
extra_gated_fields:
Full Name:
type: text
Affiliation / Company:
type: text
Email Address:
type: text
Intended Use:
type: select
options:
- Research
- Education
- Commercial Exploration
- Academic Project
- Other
extra_gated_heading: Access Request โ Provide Required Information
extra_gated_description: Before accessing this model, please complete the form below.
extra_gated_button_content: Submit Access Request
configs:
- config_name: Communication & Social Media
data_files:
- split: train
path: Communication & Social Media/train-*
- config_name: Culture & Heritage
data_files:
- split: train
path: Culture & Heritage/train-*
- config_name: Daily Life & Household
data_files:
- split: train
path: Daily Life & Household/train-*
- config_name: Education
data_files:
- split: train
path: Education/train-*
- config_name: Entertainment
data_files:
- split: train
path: Entertainment/train-*
- config_name: Finance & Banking
data_files:
- split: train
path: Finance & Banking/train-*
- config_name: Food
data_files:
- split: train
path: Food/train-*
- config_name: Geography
data_files:
- split: train
path: Geography/train-*
- config_name: Government Services
data_files:
- split: train
path: Government Services/train-*
- config_name: History
data_files:
- split: train
path: History/train-*
- config_name: Medical
data_files:
- split: train
path: Medical/train-*
- config_name: Nature & Environment
data_files:
- split: train
path: Nature & Environment/train-*
- config_name: Saudi Anthropology
data_files:
- split: train
path: Saudi Anthropology/train-*
- config_name: Shopping & Fashion
data_files:
- split: train
path: Shopping & Fashion/train-*
- config_name: Social Gatherings & Events
data_files:
- split: train
path: Social Gatherings & Events/train-*
- config_name: Sports & Fitness
data_files:
- split: train
path: Sports & Fitness/train-*
- config_name: Technology
data_files:
- split: train
path: Technology/train-*
- config_name: Transportation
data_files:
- split: train
path: Transportation/train-*
- config_name: Travel
data_files:
- split: train
path: Travel/train-*
- config_name: Weather & Seasons
data_files:
- split: train
path: Weather & Seasons/train-*
- config_name: Work & Office
data_files:
- split: train
path: Work & Office/train-*
dataset_info:
- config_name: Communication & Social Media
features:
- name: Anchor
dtype: string
- name: Positive
dtype: string
- name: Negative
dtype: string
splits:
- name: train
num_bytes: 26546
num_examples: 100
download_size: 17311
dataset_size: 26546
- config_name: Culture & Heritage
features:
- name: Anchor
dtype: string
- name: Positive
dtype: string
- name: Negative
dtype: string
splits:
- name: train
num_bytes: 22676
num_examples: 102
download_size: 14135
dataset_size: 22676
- config_name: Daily Life & Household
features:
- name: Anchor
dtype: string
- name: Positive
dtype: string
- name: Negative
dtype: string
splits:
- name: train
num_bytes: 16680
num_examples: 98
download_size: 11583
dataset_size: 16680
- config_name: Education
features:
- name: Anchor
dtype: string
- name: Positive
dtype: string
- name: Negative
dtype: string
splits:
- name: train
num_bytes: 36869
num_examples: 150
download_size: 23302
dataset_size: 36869
- config_name: Entertainment
features:
- name: Anchor
dtype: string
- name: Positive
dtype: string
- name: Negative
dtype: string
splits:
- name: train
num_bytes: 18468
num_examples: 106
download_size: 12344
dataset_size: 18468
- config_name: Finance & Banking
features:
- name: Anchor
dtype: string
- name: Positive
dtype: string
- name: Negative
dtype: string
splits:
- name: train
num_bytes: 51748
num_examples: 200
download_size: 13030
dataset_size: 51748
- config_name: Food
features:
- name: Anchor
dtype: string
- name: Positive
dtype: string
- name: Negative
dtype: string
splits:
- name: train
num_bytes: 27939
num_examples: 200
download_size: 15511
dataset_size: 27939
- config_name: Geography
features:
- name: Anchor
dtype: string
- name: Positive
dtype: string
- name: Negative
dtype: string
splits:
- name: train
num_bytes: 14147
num_examples: 91
download_size: 9469
dataset_size: 14147
- config_name: Government Services
features:
- name: Anchor
dtype: string
- name: Positive
dtype: string
- name: Negative
dtype: string
splits:
- name: train
num_bytes: 38613
num_examples: 200
download_size: 21323
dataset_size: 38613
- config_name: History
features:
- name: Anchor
dtype: string
- name: Positive
dtype: string
- name: Negative
dtype: string
splits:
- name: train
num_bytes: 23662
num_examples: 150
download_size: 6347
dataset_size: 23662
- config_name: Medical
features:
- name: Anchor
dtype: string
- name: Positive
dtype: string
- name: Negative
dtype: string
splits:
- name: train
num_bytes: 45448
num_examples: 200
download_size: 27780
dataset_size: 45448
- config_name: Nature & Environment
features:
- name: Anchor
dtype: string
- name: Positive
dtype: string
- name: Negative
dtype: string
splits:
- name: train
num_bytes: 41532
num_examples: 200
download_size: 26052
dataset_size: 41532
- config_name: Saudi Anthropology
features:
- name: Anchor
dtype: string
- name: Positive
dtype: string
- name: Negative
dtype: string
splits:
- name: train
num_bytes: 24738
num_examples: 104
download_size: 14684
dataset_size: 24738
- config_name: Shopping & Fashion
features:
- name: Anchor
dtype: string
- name: Positive
dtype: string
- name: Negative
dtype: string
splits:
- name: train
num_bytes: 19514
num_examples: 100
download_size: 13309
dataset_size: 19514
- config_name: Social Gatherings & Events
features:
- name: Anchor
dtype: string
- name: Positive
dtype: string
- name: Negative
dtype: string
splits:
- name: train
num_bytes: 17539
num_examples: 100
download_size: 12046
dataset_size: 17539
- config_name: Sports & Fitness
features:
- name: Anchor
dtype: string
- name: Positive
dtype: string
- name: Negative
dtype: string
splits:
- name: train
num_bytes: 48747
num_examples: 200
download_size: 25461
dataset_size: 48747
- config_name: Technology
features:
- name: Anchor
dtype: string
- name: Positive
dtype: string
- name: Negative
dtype: string
splits:
- name: train
num_bytes: 20857
num_examples: 100
download_size: 13317
dataset_size: 20857
- config_name: Transportation
features:
- name: Anchor
dtype: string
- name: Positive
dtype: string
- name: Negative
dtype: string
splits:
- name: train
num_bytes: 13759
num_examples: 109
download_size: 10299
dataset_size: 13759
- config_name: Travel
features:
- name: Anchor
dtype: string
- name: Positive
dtype: string
- name: Negative
dtype: string
splits:
- name: train
num_bytes: 26486
num_examples: 150
download_size: 13096
dataset_size: 26486
- config_name: Weather & Seasons
features:
- name: Anchor
dtype: string
- name: Positive
dtype: string
- name: Negative
dtype: string
splits:
- name: train
num_bytes: 32327
num_examples: 200
download_size: 19256
dataset_size: 32327
- config_name: Work & Office
features:
- name: Anchor
dtype: string
- name: Positive
dtype: string
- name: Negative
dtype: string
splits:
- name: train
num_bytes: 18158
num_examples: 104
download_size: 11650
dataset_size: 18158
language:
- ar
pretty_name: Saudi Triplet
task_categories:
- feature-extraction
- sentence-similarity
tags:
- saudi
- Arabic
- Triplet
size_categories:
- 1K<n<10K
๐ SaudiDialect-Triplet-21 : Saudi Triplet Dataset (SABER Training Data)
๐งฉ Dataset Summary
The Saudi Triplet Dataset is a high-quality corpus of 2,964 sentence triplets (Anchor, Positive, Negative) specifically curated to capture the nuances of Saudi Arabic dialects (Najdi, Hijazi, Gulf, etc.).
This dataset was created to fine-tune semantic embedding models such as SABER for tasks like Semantic Search, Retrieval-Augmented Generation (RAG), and Clustering.
It covers 21 distinct domains reflecting real-life Saudi contexts, ranging from Government Services and Finance to Tribal Anthropology and Bedouin Culture.
Team
Special thanks to the exceptional team behind this dataset.
Team
โ๏ธTravelMohammed Alhassan |
๐FoodAbdulelah Alankari |
๐๏ธFashionReem Alsuliman |
๐EducationJoud Aloqla |
๐ผWorkNouf Alessa |
๐ฑTechJude Alsubaie |
๐๏ธSportsAlbara Aseri |
๐TransportWajn Alqahtani |
๐ฌEntertainmentMuzon Assiri |
๐Daily LifeJana Alsuhaibani |
๐ฐFinanceAbdullah Alsalem |
๐ค๏ธWeatherHuda Aldawsari |
๐EventsShaden Alosaimi |
๐ฉบMedicalMunirah Alsubaie |
๐ขSocialMohammed Alziyad |
๐ธ๐ฆCultureShatha Alotaibi |
๐ฟNatureNorah Altwijri |
๐HistoryRenad Alrifai |
๐บ๏ธGeographyMurtada Altarouti |
๐๏ธGovLama Almutairi |
๐ฅAnthroAdnan Hawsawi |
๐ Dataset Statistics
| Statistic | Value |
|---|---|
| Total Triplets | 2,964 |
| Total Domains | 21 |
| Language | Saudi Dialect |
| Duplicate Anchors | 59 (Multi-positive/negative pairings) |
๐ Sentence Lengths (Word Count)
The dataset consists primarily of short-to-medium length queries and sentences, typical of search and conversational inputs.
| Metric | Anchor | Positive | Negative |
|---|---|---|---|
| Mean | 6.42 | 6.50 | 5.34 |
| Std Dev | 1.85 | 1.96 | 1.77 |
| Min | 2 | 2 | 2 |
| Max | 13 | 15 | 12 |
๐๏ธ Domain Distribution
The dataset is balanced across high-resource topics (Food, Finance) and specific cultural topics (Anthropology, Heritage).
| Domain | Count |
|---|---|
| Food | 200 |
| Finance & Banking | 200 |
| Government Services | 200 |
| Medical | 200 |
| Sports & Fitness | 200 |
| Weather & Seasons | 200 |
| Nature & Environment | 200 |
| Education | 150 |
| Travel | 150 |
| History | 150 |
| Transportation | 109 |
| Entertainment | 106 |
| Saudi Anthropology | 104 |
| Work & Office | 104 |
| Culture & Heritage | 102 |
| Shopping & Fashion | 100 |
| Technology | 100 |
| Communication & Social Media | 100 |
| Social Gatherings & Events | 100 |
| Daily Life & Household | 98 |
| Geography | 91 |
๐ Data Structure
Each row in the dataset represents a training triplet designed for Contrastive Learning (e.g., MNRL).
| Column Name | Type | Description |
|---|---|---|
Anchor |
String | The reference sentence/query in Saudi dialect. |
Positive |
String | A sentence semantically similar to the Anchor (paraphrase or answer). |
Negative |
String | A sentence semantically dissimilar to the Anchor (different topic or meaning). |
Domain |
String | The topic category of the triplet. |
๐ Data Samples
Below are real examples from the dataset showing the dialectal variations and domain diversity.
| Domain | Anchor (Query) | Positive (Match) | Negative (Mismatch) |
|---|---|---|---|
| Shopping & Fashion | ุฃุจู ูุฑุดู ุชูู ุงูุนูุฏ ูู ุง ุชูุทุน ุงูุดุนุฑ | ุงุจู ู ุดุท ู ุง ูุฎุฑุจ ุงูุดุนุฑ ูููุชูู | ู ุชู ุจููุตููู ุทูู ุงูุฃูู ุงุณ ุงููู ุทูุจุชูุ |
| Finance & Banking | ุฃุจุบุง ุฃูุชุญ ู ุญูุธุฉ ุฃุณูู ูุฃุจุฏุฃ ุงุณุชุซู ุงุฑ ุจุณูุท | ุฃููุฑ ุฃุจุฏุฃ ุชุฏุงูู ุฎููู ูู ุงูุฃุณูู ุนู ุทุฑูู ุงูู ุญูุธุฉ | ูุงูู ุฃุฒูุฑ ุงูุนุงุฆูุฉ ูู ุงููุฑูุฉ ุงูุฃุณุจูุน ุงูุฌุงู |
| Culture & Heritage | ุฃู ุณ ุณู ุนุช ูุตุงุฆุฏ ุนู ุงูุดุฌุงุนุฉ ูุงููุฑูุณูุฉ | ุงููุตุงูุฏ ุงูุจุฏููุฉ ู ุนุงูููุง ูููุฉ | ุดุบูุช ุงูุบุณุงูุฉ ุจุงูุบูุท |
| Food | ุงูุณููููู ุนูุฏูู ูุฎู | ุงูุณููููู ูุฐูุจ ุจุงููู | ู ุง ูุตูุช ุงูุดุญูุฉ |
| History | ุงููุงูุฏ ูุงู ุฏุงูู ูุฐูุฑ ู ู ููุฉ ูุญูุงู | ุดูุช ุจุฑูุงู ุฌ ูุชููู ุนู ุณูู ุนูุงุธ | ุทูุจู ุชุฃุฎุฑ ุจุงูู ุทุนู |
| Travel | ููู ุฃุญุตู ุนูู ุฌููุงุช ุณูุงุญูุฉ ุฑุฎูุตุฉุ | ุฃุจุบู ุฃููู ุนุฑูุถ ุณูุงุญูุฉ ุงูุชุตุงุฏูุฉ | ุงูุฌู ุญุงุฑ ูู ุง ุฃูุฏุฑ ุฃุทูุน |
โ ๏ธ Quality & Integrity
- Missing Data: There are no missing values in the Anchor, Positive, or Negative columns.
- Duplicates: There are 59 duplicate anchors. This is intentional in some cases to provide multiple positive pairings for the same query or to enforce separation from different hard negatives.
- Dialect Intensity: The text ranges from "White Dialect" (understandable by most Arabs) to deep Saudi vernacular (specific to Najd/Hijaz/South).
๐ ๏ธ Usage
This dataset is optimized for training sentence transformers using MultipleNegativesRankingLoss.
from datasets import load_dataset
# Load the dataset (Example path)
dataset = load_dataset("Omartificial-Intelligence-Space/Saudi-Triplet-Dataset")
# Print first example
print(dataset['train'][0])