| language: | |
| - ar | |
| - az | |
| - be | |
| - bg | |
| - bn | |
| - bs | |
| - cs | |
| - da | |
| - de | |
| - el | |
| - en | |
| - eo | |
| - es | |
| - et | |
| - eu | |
| - fa | |
| - fi | |
| - fr | |
| - gl | |
| - he | |
| - hi | |
| - hr | |
| - hu | |
| - hy | |
| - id | |
| - it | |
| - ja | |
| - ka | |
| - kk | |
| - ko | |
| - ku | |
| - lt | |
| - mk | |
| - mn | |
| - mr | |
| - ms | |
| - my | |
| - nb | |
| - nl | |
| - pl | |
| - pt | |
| - ro | |
| - ru | |
| - sk | |
| - sl | |
| - sq | |
| - sr | |
| - sv | |
| - ta | |
| - th | |
| - tr | |
| - uk | |
| - ur | |
| - vi | |
| - zh | |
| language_creators: | |
| - expert-generated | |
| annotations_creators: | |
| - crowdsourced | |
| license: | |
| - cc-by-nc-nd-4.0 | |
| multilinguality: | |
| - translation | |
| pretty_name: TED_Talks | |
| task_categories: | |
| - translation | |
| ## Dataset Description | |
| Train, validation and test splits for TED talks as in http://phontron.com/data/ted_talks.tar.gz. Data is detokenized using moses. | |
| Example of loading: | |
| ```python | |
| dataset = load_dataset("davidstap/ted_talks", "ar_en", trust_remote_code=True) | |
| ``` | |
| Note that `ar_en` and `en_ar` will result in the same data being loaded.. | |
| The following languages are available: | |
| ``` | |
| - ar | |
| - az | |
| - be | |
| - bg | |
| - bn | |
| - bs | |
| - cs | |
| - da | |
| - de | |
| - el | |
| - en | |
| - eo | |
| - es | |
| - et | |
| - eu | |
| - fa | |
| - fi | |
| - fr | |
| - fr-ca | |
| - gl | |
| - he | |
| - hi | |
| - hr | |
| - hu | |
| - hy | |
| - id | |
| - it | |
| - ja | |
| - ka | |
| - kk | |
| - ko | |
| - ku | |
| - lt | |
| - mk | |
| - mn | |
| - mr | |
| - ms | |
| - my | |
| - nb | |
| - nl | |
| - pl | |
| - pt | |
| - pt-br | |
| - ro | |
| - ru | |
| - sk | |
| - sl | |
| - sq | |
| - sr | |
| - sv | |
| - ta | |
| - th | |
| - tr | |
| - uk | |
| - ur | |
| - vi | |
| - zh | |
| - zh-cn | |
| - zh-tw | |
| ``` | |
| ### Citation Information | |
| ``` | |
| @inproceedings{qi-etal-2018-pre, | |
| title = "When and Why Are Pre-Trained Word Embeddings Useful for Neural Machine Translation?", | |
| author = "Qi, Ye and | |
| Sachan, Devendra and | |
| Felix, Matthieu and | |
| Padmanabhan, Sarguna and | |
| Neubig, Graham", | |
| booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)", | |
| month = jun, | |
| year = "2018", | |
| address = "New Orleans, Louisiana", | |
| publisher = "Association for Computational Linguistics", | |
| url = "https://aclanthology.org/N18-2084", | |
| doi = "10.18653/v1/N18-2084", | |
| pages = "529--535", | |
| } | |
| ``` | |