Datasets:
Search is not available for this dataset
image
imagewidth (px) 256
256
| label
class label 11
classes |
|---|---|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
|
0animals
|
End of preview. Expand
in Data Studio
RENDR Dataset
Dataset Description
RENDR is a large-scale synthetic dataset of rendered 3D objects across 11 object categories. The dataset contains rendered images from 3D assets sourced from BlenderKit and Haven, designed for training and evaluating computer vision models on synthetic 3D data.
Dataset Statistics
Split Overview
| Split | Total Images | Rendered | BlenderKit Assets | Haven Assets |
|---|---|---|---|---|
| Train | 29,291 | 23,836 | 5,397 | 58 |
| Test | 5,929 | 4,206 | 1,701 | 22 |
Class Distribution
| Class | Train (Rendered) | Train (BlenderKit) | Train (Haven) | Test (Rendered) | Test (BlenderKit) | Test (Haven) |
|---|---|---|---|---|---|---|
| Animals | 2,369 | 133 | 1 | 416 | 103 | 1 |
| Appliances | 1,966 | 388 | 5 | 346 | 150 | 2 |
| Architecture | 2,224 | 523 | 7 | 392 | 171 | 3 |
| Decoration | 2,226 | 731 | 0 | 392 | 188 | 0 |
| Electronics | 1,905 | 246 | 6 | 336 | 126 | 3 |
| Furniture | 2,154 | 1,075 | 0 | 380 | 190 | 0 |
| Lighting | 1,565 | 266 | 1 | 278 | 117 | 0 |
| Mechanical | 2,150 | 386 | 18 | 380 | 151 | 8 |
| Nature | 2,782 | 799 | 0 | 492 | 217 | 0 |
| People | 2,554 | 205 | 0 | 452 | 136 | 0 |
| Tools | 1,941 | 645 | 20 | 342 | 152 | 5 |
Dataset Structure
rendr/
βββ train/
β βββ animals/
β βββ appliances/
β βββ architecture/
β βββ decoration/
β βββ electronics/
β βββ furniture/
β βββ lighting/
β βββ mechanical/
β βββ nature/
β βββ people/
β βββ tools/
βββ test/
βββ [same structure as train]
Normalization Statistics
For standard ImageNet-style normalization:
- Mean:
[0.5910, 0.5846, 0.5790] - Std:
[0.2724, 0.2733, 0.2781]
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("jneuendorf/rendr")
# Access splits
train_data = dataset['train']
test_data = dataset['test']
# Example: Load with normalization
from torchvision import transforms
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=[0.5910, 0.5846, 0.5790],
std=[0.2724, 0.2733, 0.2781]
)
])
Data Sources
- Rendered Images: Custom rendered synthetic images
- BlenderKit: 3D assets from BlenderKit library
- Haven: 3D assets from Poly Haven
Classes
The dataset includes 11 object categories:
- Animals
- Appliances
- Architecture
- Decoration
- Electronics
- Furniture
- Lighting
- Mechanical
- Nature
- People
- Tools
Citation
If you use this dataset, please cite:
@dataset{rendr,
title={RENDR: A Large-Scale Synthetic 3D Object Dataset},
author={Jim Neuendorf},
year={2025}
}
License
MIT License - Copyright (c) 2025 Jim Neuendorf
- Downloads last month
- 8