Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
image
imagewidth (px)
256
256
label
class label
11 classes
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
0animals
End of preview. Expand in Data Studio

RENDR Dataset

Dataset Description

RENDR is a large-scale synthetic dataset of rendered 3D objects across 11 object categories. The dataset contains rendered images from 3D assets sourced from BlenderKit and Haven, designed for training and evaluating computer vision models on synthetic 3D data.

Dataset Statistics

Split Overview

Split Total Images Rendered BlenderKit Assets Haven Assets
Train 29,291 23,836 5,397 58
Test 5,929 4,206 1,701 22

Class Distribution

Class Train (Rendered) Train (BlenderKit) Train (Haven) Test (Rendered) Test (BlenderKit) Test (Haven)
Animals 2,369 133 1 416 103 1
Appliances 1,966 388 5 346 150 2
Architecture 2,224 523 7 392 171 3
Decoration 2,226 731 0 392 188 0
Electronics 1,905 246 6 336 126 3
Furniture 2,154 1,075 0 380 190 0
Lighting 1,565 266 1 278 117 0
Mechanical 2,150 386 18 380 151 8
Nature 2,782 799 0 492 217 0
People 2,554 205 0 452 136 0
Tools 1,941 645 20 342 152 5

Dataset Structure

rendr/
β”œβ”€β”€ train/
β”‚   β”œβ”€β”€ animals/
β”‚   β”œβ”€β”€ appliances/
β”‚   β”œβ”€β”€ architecture/
β”‚   β”œβ”€β”€ decoration/
β”‚   β”œβ”€β”€ electronics/
β”‚   β”œβ”€β”€ furniture/
β”‚   β”œβ”€β”€ lighting/
β”‚   β”œβ”€β”€ mechanical/
β”‚   β”œβ”€β”€ nature/
β”‚   β”œβ”€β”€ people/
β”‚   └── tools/
└── test/
    └── [same structure as train]

Normalization Statistics

For standard ImageNet-style normalization:

  • Mean: [0.5910, 0.5846, 0.5790]
  • Std: [0.2724, 0.2733, 0.2781]

Usage

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("jneuendorf/rendr")

# Access splits
train_data = dataset['train']
test_data = dataset['test']

# Example: Load with normalization
from torchvision import transforms

transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(
        mean=[0.5910, 0.5846, 0.5790],
        std=[0.2724, 0.2733, 0.2781]
    )
])

Data Sources

  • Rendered Images: Custom rendered synthetic images
  • BlenderKit: 3D assets from BlenderKit library
  • Haven: 3D assets from Poly Haven

Classes

The dataset includes 11 object categories:

  1. Animals
  2. Appliances
  3. Architecture
  4. Decoration
  5. Electronics
  6. Furniture
  7. Lighting
  8. Mechanical
  9. Nature
  10. People
  11. Tools

Citation

If you use this dataset, please cite:

@dataset{rendr,
  title={RENDR: A Large-Scale Synthetic 3D Object Dataset},
  author={Jim Neuendorf},
  year={2025}
}

License

MIT License - Copyright (c) 2025 Jim Neuendorf

Downloads last month
8