Search is not available for this dataset
name
string | module
string | type
string |
|---|---|---|
ProbabilityTheory.mgf_congr_identDistrib
|
Mathlib.Probability.Moments.Basic
|
β {Ξ© : Type u_1} {m : MeasurableSpace Ξ©} {X : Ξ© β β} {ΞΌ : MeasureTheory.Measure Ξ©} {Ξ©' : Type u_3}
{mΞ©' : MeasurableSpace Ξ©'} {ΞΌ' : MeasureTheory.Measure Ξ©'} {Y : Ξ©' β β},
ProbabilityTheory.IdentDistrib X Y ΞΌ ΞΌ' β ProbabilityTheory.mgf X ΞΌ = ProbabilityTheory.mgf Y ΞΌ'
|
_private.Init.Data.Iterators.Lemmas.Consumers.Collect.0.Std.Iterators.Iter.reverse_toListRev._simp_1_1
|
Init.Data.Iterators.Lemmas.Consumers.Collect
|
β {Ξ± Ξ² : Type w} {m : Type w β Type w'} [inst : Monad m] [LawfulMonad m] [inst_2 : Std.Iterators.Iterator Ξ± m Ξ²]
[inst_3 : Std.Iterators.Finite Ξ± m] [inst_4 : Std.Iterators.IteratorCollect Ξ± m m]
[Std.Iterators.LawfulIteratorCollect Ξ± m m] {it : Std.IterM m Ξ²}, it.toList = List.reverse <$> it.toListRev
|
OrderIso.sumLexIicIoi_symm_apply_Iic
|
Mathlib.Order.Hom.Lex
|
β {Ξ± : Type u_1} [inst : LinearOrder Ξ±] {x : Ξ±} (a : β(Set.Iic x)), (OrderIso.sumLexIicIoi x).symm βa = Sum.inl a
|
ProofWidgets.Html._sizeOf_1
|
ProofWidgets.Data.Html
|
ProofWidgets.Html β β
|
_private.Mathlib.Topology.Instances.EReal.Lemmas.0.EReal.continuousAt_mul_top_pos._simp_1_9
|
Mathlib.Topology.Instances.EReal.Lemmas
|
β {Ξ± : Type u} [inst : LinearOrder Ξ±] {a b c : Ξ±}, (a < max b c) = (a < b β¨ a < c)
|
CategoryTheory.Mon.Hom.mk.sizeOf_spec
|
Mathlib.CategoryTheory.Monoidal.Mon_
|
β {C : Type uβ} [inst : CategoryTheory.Category.{vβ, uβ} C] [inst_1 : CategoryTheory.MonoidalCategory C]
{M N : CategoryTheory.Mon C} [inst_2 : SizeOf C] (hom : M.X βΆ N.X) [isMonHom_hom : CategoryTheory.IsMonHom hom],
sizeOf { hom := hom, isMonHom_hom := isMonHom_hom } = 1 + sizeOf hom + sizeOf isMonHom_hom
|
Lean.Elab.Tactic.nonempty_to_inhabited
|
Mathlib.Tactic.Inhabit
|
(Ξ± : Sort u_1) β Nonempty Ξ± β Inhabited Ξ±
|
AlgebraicGeometry.IsLocalIso.instIsMultiplicativeScheme
|
Mathlib.AlgebraicGeometry.Morphisms.LocalIso
|
CategoryTheory.MorphismProperty.IsMultiplicative @AlgebraicGeometry.IsLocalIso
|
Lean.Elab.Tactic.Do.Fuel.recOn
|
Lean.Elab.Tactic.Do.VCGen.Basic
|
{motive : Lean.Elab.Tactic.Do.Fuel β Sort u} β
(t : Lean.Elab.Tactic.Do.Fuel) β
((n : β) β motive (Lean.Elab.Tactic.Do.Fuel.limited n)) β motive Lean.Elab.Tactic.Do.Fuel.unlimited β motive t
|
NonemptyChain.rec
|
Mathlib.Order.BourbakiWitt
|
{Ξ± : Type u_2} β
[inst : LE Ξ±] β
{motive : NonemptyChain Ξ± β Sort u} β
((carrier : Set Ξ±) β
(Nonempty' : carrier.Nonempty) β
(isChain' : IsChain (fun x1 x2 => x1 β€ x2) carrier) β
motive { carrier := carrier, Nonempty' := Nonempty', isChain' := isChain' }) β
(t : NonemptyChain Ξ±) β motive t
|
le_of_pow_le_pow_leftβ
|
Mathlib.Algebra.Order.GroupWithZero.Unbundled.Basic
|
β {Mβ : Type u_2} [inst : MonoidWithZero Mβ] [inst_1 : LinearOrder Mβ] [PosMulStrictMono Mβ] {a b : Mβ} {n : β}
[MulPosMono Mβ], n β 0 β 0 β€ b β a ^ n β€ b ^ n β a β€ b
|
PadicAlgCl.valuation_p
|
Mathlib.NumberTheory.Padics.Complex
|
β (p : β) [inst : Fact (Nat.Prime p)], Valued.v βp = 1 / βp
|
Nat.map_cast_int_atTop
|
Mathlib.Order.Filter.AtTopBot.Basic
|
Filter.map Nat.cast Filter.atTop = Filter.atTop
|
QuotientGroup.mk_mul
|
Mathlib.GroupTheory.QuotientGroup.Defs
|
β {G : Type u_1} [inst : Group G] (N : Subgroup G) [nN : N.Normal] (a b : G), β(a * b) = βa * βb
|
Std.DTreeMap.contains_emptyc
|
Std.Data.DTreeMap.Lemmas
|
β {Ξ± : Type u} {Ξ² : Ξ± β Type v} {cmp : Ξ± β Ξ± β Ordering} {k : Ξ±}, β
.contains k = false
|
Finset.weightedVSub
|
Mathlib.LinearAlgebra.AffineSpace.Combination
|
{k : Type u_1} β
{V : Type u_2} β
{P : Type u_3} β
[inst : Ring k] β
[inst_1 : AddCommGroup V] β
[inst_2 : Module k V] β [S : AddTorsor V P] β {ΞΉ : Type u_4} β Finset ΞΉ β (ΞΉ β P) β (ΞΉ β k) ββ[k] V
|
CategoryTheory.MorphismProperty.LeftFraction.unop_f
|
Mathlib.CategoryTheory.Localization.CalculusOfFractions
|
β {C : Type u_1} [inst : CategoryTheory.Category.{u_3, u_1} C] {W : CategoryTheory.MorphismProperty Cα΅α΅} {X Y : Cα΅α΅}
(Ο : W.LeftFraction X Y), Ο.unop.f = Ο.f.unop
|
MeasureTheory.AddContent.mk._flat_ctor
|
Mathlib.MeasureTheory.Measure.AddContent
|
{Ξ± : Type u_1} β
{C : Set (Set Ξ±)} β
(toFun : Set Ξ± β ENNReal) β
toFun β
= 0 β
(β (I : Finset (Set Ξ±)), βI β C β (βI).PairwiseDisjoint id β ββ βI β C β toFun (ββ βI) = β u β I, toFun u) β
MeasureTheory.AddContent C
|
_auto._@.Mathlib.Probability.Independence.Conditional.1406646405._hygCtx._hyg.20
|
Mathlib.Probability.Independence.Conditional
|
Lean.Syntax
|
_private.Mathlib.Tactic.Linarith.Preprocessing.0.Mathlib.Tactic.Linarith.nlinarithGetSquareProofs
|
Mathlib.Tactic.Linarith.Preprocessing
|
List Lean.Expr β Lean.MetaM (List Lean.Expr)
|
Int.natCast_toNat_eq_self
|
Init.Data.Int.LemmasAux
|
β {a : β€}, βa.toNat = a β 0 β€ a
|
instDecidableRelAssociatedOfDvd
|
Mathlib.Algebra.GroupWithZero.Associated
|
{M : Type u_1} β
[inst : CancelMonoidWithZero M] β [DecidableRel fun x1 x2 => x1 β£ x2] β DecidableRel fun x1 x2 => Associated x1 x2
|
Filter.EventuallyEq.lieBracketWithin_vectorField_eq_of_insert
|
Mathlib.Analysis.Calculus.VectorField
|
β {π : Type u_1} [inst : NontriviallyNormedField π] {E : Type u_2} [inst_1 : NormedAddCommGroup E]
[inst_2 : NormedSpace π E] {V W Vβ Wβ : E β E} {s : Set E} {x : E},
Vβ =αΆ [nhdsWithin x (insert x s)] V β
Wβ =αΆ [nhdsWithin x (insert x s)] W β
VectorField.lieBracketWithin π Vβ Wβ s x = VectorField.lieBracketWithin π V W s x
|
Lean.AxiomVal.isUnsafeEx
|
Lean.Declaration
|
Lean.AxiomVal β Bool
|
BitVec.not_or_self
|
Init.Data.BitVec.Lemmas
|
β {w : β} (x : BitVec w), ~~~x ||| x = BitVec.allOnes w
|
_private.Lean.PrettyPrinter.Delaborator.Builtins.0.Lean.PrettyPrinter.Delaborator.delabLetE._sparseCasesOn_3
|
Lean.PrettyPrinter.Delaborator.Builtins
|
{motive : Lean.Expr β Sort u} β
(t : Lean.Expr) β
((declName : Lean.Name) β
(type value body : Lean.Expr) β (nondep : Bool) β motive (Lean.Expr.letE declName type value body nondep)) β
(t.ctorIdx β 8 β motive t) β motive t
|
_private.Lean.Server.FileWorker.SemanticHighlighting.0.Lean.Server.FileWorker.splitStr._proof_1
|
Lean.Server.FileWorker.SemanticHighlighting
|
β (text : Lean.FileMap) (pos : String.Pos.Raw),
β i β [(text.toPosition pos).line:text.positions.size], i < text.positions.size
|
Pi.intCast_def
|
Mathlib.Data.Int.Cast.Pi
|
β {ΞΉ : Type u_1} {Ο : ΞΉ β Type u_2} [inst : (i : ΞΉ) β IntCast (Ο i)] (n : β€), βn = fun x => βn
|
CategoryTheory.ObjectProperty.ColimitOfShape._sizeOf_1
|
Mathlib.CategoryTheory.ObjectProperty.ColimitsOfShape
|
{C : Type u_1} β
{inst : CategoryTheory.Category.{u_2, u_1} C} β
{P : CategoryTheory.ObjectProperty C} β
{J : Type u'} β
{inst_1 : CategoryTheory.Category.{v', u'} J} β
{X : C} β [SizeOf C] β [(a : C) β SizeOf (P a)] β [SizeOf J] β P.ColimitOfShape J X β β
|
Lean.Lsp.FoldingRangeParams.mk.sizeOf_spec
|
Lean.Data.Lsp.LanguageFeatures
|
β (textDocument : Lean.Lsp.TextDocumentIdentifier), sizeOf { textDocument := textDocument } = 1 + sizeOf textDocument
|
mul_self_nonneg
|
Mathlib.Algebra.Order.Ring.Unbundled.Basic
|
β {R : Type u} [inst : Semiring R] [inst_1 : LinearOrder R] [ExistsAddOfLE R] [PosMulMono R] [AddLeftMono R] (a : R),
0 β€ a * a
|
Matroid.comap_isBasis'_iff._simp_1
|
Mathlib.Combinatorics.Matroid.Map
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} {f : Ξ± β Ξ²} {N : Matroid Ξ²} {I X : Set Ξ±},
(N.comap f).IsBasis' I X = (N.IsBasis' (f '' I) (f '' X) β§ Set.InjOn f I β§ I β X)
|
_private.Init.Data.Order.PackageFactories.0.Std.LinearPreorderPackage.ofOrd._simp_4
|
Init.Data.Order.PackageFactories
|
β {Ξ± : Type u} [inst : Ord Ξ±] [inst_1 : LE Ξ±] [Std.LawfulOrderOrd Ξ±] {a b : Ξ±}, ((compare a b).isGE = true) = (b β€ a)
|
Ordinal.deriv_zero_left
|
Mathlib.SetTheory.Ordinal.FixedPoint
|
β (a : Ordinal.{u_1}), Ordinal.deriv 0 a = a
|
SimpleGraph.completeEquipartiteGraph.completeMultipartiteGraph._proof_1
|
Mathlib.Combinatorics.SimpleGraph.CompleteMultipartite
|
β {r t : β} (a a_1 : Fin r Γ Fin t),
(SimpleGraph.comap Sigma.fst β€).Adj β¨a.1, a.2β© β¨a_1.1, a_1.2β© β (SimpleGraph.comap Prod.fst β€).Adj a a_1
|
Lean.Grind.Linarith.lt_norm
|
Init.Grind.Ordered.Linarith
|
β {Ξ± : Type u_1} [inst : Lean.Grind.IntModule Ξ±] [inst_1 : LE Ξ±] [inst_2 : LT Ξ±] [Std.LawfulOrderLT Ξ±]
[inst_4 : Std.IsPreorder Ξ±] [Lean.Grind.OrderedAdd Ξ±] (ctx : Lean.Grind.Linarith.Context Ξ±)
(lhs rhs : Lean.Grind.Linarith.Expr) (p : Lean.Grind.Linarith.Poly),
Lean.Grind.Linarith.norm_cert lhs rhs p = true β
Lean.Grind.Linarith.Expr.denote ctx lhs < Lean.Grind.Linarith.Expr.denote ctx rhs β
Lean.Grind.Linarith.Poly.denote' ctx p < 0
|
DomMulAct.instCancelCommMonoidOfMulOpposite.eq_1
|
Mathlib.GroupTheory.GroupAction.DomAct.Basic
|
β {M : Type u_1} [inst : CancelCommMonoid Mα΅α΅α΅], DomMulAct.instCancelCommMonoidOfMulOpposite = inst
|
Lean.Grind.CommRing.Poly.degree
|
Lean.Meta.Tactic.Grind.Arith.CommRing.Poly
|
Lean.Grind.CommRing.Poly β β
|
SimpleGraph.Copy.isoSubgraphMap._simp_3
|
Mathlib.Combinatorics.SimpleGraph.Copy
|
β {Ξ± : Sort u_1} {p : Ξ± β Prop} {a' : Ξ±}, (β a, p a β§ a = a') = p a'
|
Pi.addHom.eq_1
|
Mathlib.Algebra.Group.Pi.Lemmas
|
β {I : Type u} {f : I β Type v} {Ξ³ : Type w} [inst : (i : I) β Add (f i)] [inst_1 : Add Ξ³] (g : (i : I) β Ξ³ ββ+ f i),
Pi.addHom g = { toFun := fun x i => (g i) x, map_add' := β― }
|
Qq.Impl.unquoteExpr
|
Qq.Macro
|
Lean.Expr β Qq.Impl.UnquoteM Lean.Expr
|
Nat.reduceLeDiff._regBuiltin.Nat.reduceLeDiff.declare_1._@.Lean.Meta.Tactic.Simp.BuiltinSimprocs.Nat.2466209926._hygCtx._hyg.24
|
Lean.Meta.Tactic.Simp.BuiltinSimprocs.Nat
|
IO Unit
|
_private.Mathlib.RingTheory.Valuation.Extension.0.Valuation.HasExtension.algebraMap_mem_maximalIdeal_iff._simp_1_1
|
Mathlib.RingTheory.Valuation.Extension
|
β {R : Type u_1} [inst : CommSemiring R] [inst_1 : IsLocalRing R] (x : R),
(x β IsLocalRing.maximalIdeal R) = (x β nonunits R)
|
Lean.Compiler.LCNF.ConfigOptions.mk
|
Lean.Compiler.LCNF.ConfigOptions
|
β β β β β β Bool β Bool β Lean.Compiler.LCNF.ConfigOptions
|
_private.Mathlib.Topology.Algebra.Module.LinearPMap.0.LinearPMap.inverse_isClosable_iff.match_1_1
|
Mathlib.Topology.Algebra.Module.LinearPMap
|
β {R : Type u_1} {E : Type u_3} {F : Type u_2} [inst : CommRing R] [inst_1 : AddCommGroup E] [inst_2 : AddCommGroup F]
[inst_3 : Module R E] [inst_4 : Module R F] [inst_5 : TopologicalSpace E] [inst_6 : TopologicalSpace F]
{f : E ββ.[R] F} [inst_7 : ContinuousAdd E] [inst_8 : ContinuousAdd F] [inst_9 : TopologicalSpace R]
[inst_10 : ContinuousSMul R E] [inst_11 : ContinuousSMul R F] (motive : f.inverse.IsClosable β Prop)
(h : f.inverse.IsClosable),
(β (f' : F ββ.[R] E) (h : f.inverse.graph.topologicalClosure = f'.graph), motive β―) β motive h
|
ne_zero_of_dvd_ne_zero
|
Mathlib.Algebra.GroupWithZero.Divisibility
|
β {Ξ± : Type u_1} [inst : MonoidWithZero Ξ±] {p q : Ξ±}, q β 0 β p β£ q β p β 0
|
Lean.Meta.Canonicalizer.CanonM.run'
|
Lean.Meta.Canonicalizer
|
{Ξ± : Type} β
Lean.Meta.CanonM Ξ± β
optParam Lean.Meta.TransparencyMode Lean.Meta.TransparencyMode.instances β
optParam Lean.Meta.Canonicalizer.State { } β Lean.MetaM Ξ±
|
_private.Mathlib.Data.Ordmap.Invariants.0.Ordnode.splitMax_eq.match_1_1
|
Mathlib.Data.Ordmap.Invariants
|
β {Ξ± : Type u_1} (motive : β β Ordnode Ξ± β Ξ± β Ordnode Ξ± β Prop) (x : β) (x_1 : Ordnode Ξ±) (x_2 : Ξ±) (x_3 : Ordnode Ξ±),
(β (x : β) (x_4 : Ordnode Ξ±) (x_5 : Ξ±), motive x x_4 x_5 Ordnode.nil) β
(β (x : β) (l : Ordnode Ξ±) (x_4 : Ξ±) (ls : β) (ll : Ordnode Ξ±) (lx : Ξ±) (lr : Ordnode Ξ±),
motive x l x_4 (Ordnode.node ls ll lx lr)) β
motive x x_1 x_2 x_3
|
Mathlib.Tactic.RingNF._aux_Mathlib_Tactic_Ring_RingNF___macroRules_Mathlib_Tactic_RingNF_ring_1
|
Mathlib.Tactic.Ring.RingNF
|
Lean.Macro
|
AlgebraicGeometry.instQuasiCompactLiftSchemeIdOfQuasiSeparatedSpaceCarrierCarrierCommRingCat
|
Mathlib.AlgebraicGeometry.Morphisms.QuasiSeparated
|
β {X : AlgebraicGeometry.Scheme} [QuasiSeparatedSpace β₯X],
AlgebraicGeometry.QuasiCompact
(CategoryTheory.Limits.prod.lift (CategoryTheory.CategoryStruct.id X) (CategoryTheory.CategoryStruct.id X))
|
Pi.subtractionMonoid.eq_1
|
Mathlib.Algebra.Group.Pi.Basic
|
β {I : Type u} {f : I β Type vβ} [inst : (i : I) β SubtractionMonoid (f i)],
Pi.subtractionMonoid = { toSubNegMonoid := Pi.subNegMonoid, neg_neg := β―, neg_add_rev := β―, neg_eq_of_add := β― }
|
CategoryTheory.regularEpiOfEpi
|
Mathlib.CategoryTheory.Limits.Shapes.RegularMono
|
{C : Type uβ} β
[inst : CategoryTheory.Category.{vβ, uβ} C] β
{X Y : C} β
[CategoryTheory.IsRegularEpiCategory C] β (f : X βΆ Y) β [CategoryTheory.Epi f] β CategoryTheory.RegularEpi f
|
AddAction.toAddSemigroupAction
|
Mathlib.Algebra.Group.Action.Defs
|
{G : Type u_9} β {P : Type u_10} β {inst : AddMonoid G} β [self : AddAction G P] β AddSemigroupAction G P
|
SimpContFract.IsContFract
|
Mathlib.Algebra.ContinuedFractions.Basic
|
{Ξ± : Type u_1} β [inst : One Ξ±] β [Zero Ξ±] β [LT Ξ±] β SimpContFract Ξ± β Prop
|
SimpleGraph.chromaticNumber_eq_iInf
|
Mathlib.Combinatorics.SimpleGraph.Coloring
|
β {V : Type u} {G : SimpleGraph V}, G.chromaticNumber = β¨
n, ββn
|
Finsupp.liftAddHom._proof_2
|
Mathlib.Algebra.BigOperators.Finsupp.Basic
|
β {Ξ± : Type u_1} {M : Type u_2} {N : Type u_3} [inst : AddZeroClass M] [inst_1 : AddCommMonoid N] (F : Ξ± β M β+ N)
(x x_1 : Ξ± ββ M), ((x + x_1).sum fun x => β(F x)) = (x.sum fun x => β(F x)) + x_1.sum fun x => β(F x)
|
Mathlib.Meta.FunProp.LambdaTheorem.getProof
|
Mathlib.Tactic.FunProp.Theorems
|
Mathlib.Meta.FunProp.LambdaTheorem β Lean.MetaM Lean.Expr
|
_private.Mathlib.Algebra.Group.Conj.0.isConj_iff_eq.match_1_1
|
Mathlib.Algebra.Group.Conj
|
β {Ξ± : Type u_1} [inst : CommMonoid Ξ±] {a b : Ξ±} (motive : IsConj a b β Prop) (x : IsConj a b),
(β (c : Ξ±Λ£) (hc : SemiconjBy (βc) a b), motive β―) β motive x
|
TopCat.pullbackHomeoPreimage._proof_7
|
Mathlib.Topology.Category.TopCat.Limits.Pullbacks
|
β {X : Type u_3} {Y : Type u_1} {Z : Type u_2} (f : X β Z) (g : Y β Z) (x : β(f β»ΒΉ' Set.range g)),
β y, g y = f (ββ¨(βx, Exists.choose β―), β―β©).1
|
GaloisInsertion.mk._flat_ctor
|
Mathlib.Order.GaloisConnection.Defs
|
{Ξ± : Type u_2} β
{Ξ² : Type u_3} β
[inst : Preorder Ξ±] β
[inst_1 : Preorder Ξ²] β
{l : Ξ± β Ξ²} β
{u : Ξ² β Ξ±} β
(choice : (x : Ξ±) β u (l x) β€ x β Ξ²) β
GaloisConnection l u β
(β (x : Ξ²), x β€ l (u x)) β (β (a : Ξ±) (h : u (l a) β€ a), choice a h = l a) β GaloisInsertion l u
|
CategoryTheory.Pretriangulated.Triangle.isoMk._simp_1
|
Mathlib.CategoryTheory.Triangulated.Basic
|
β {C : Type uβ} [inst : CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [inst_1 : CategoryTheory.Category.{vβ, uβ} D]
(self : CategoryTheory.Functor C D) {X Y Z : C} (f : X βΆ Y) (g : Y βΆ Z),
CategoryTheory.CategoryStruct.comp (self.map f) (self.map g) = self.map (CategoryTheory.CategoryStruct.comp f g)
|
_private.Mathlib.Analysis.BoxIntegral.Partition.Basic.0.BoxIntegral.Prepartition.filter_le.match_1_1
|
Mathlib.Analysis.BoxIntegral.Partition.Basic
|
β {ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) (p : BoxIntegral.Box ΞΉ β Prop)
(J : BoxIntegral.Box ΞΉ) (motive : J β Ο β§ p J β Prop) (x : J β Ο β§ p J),
(β (hΟ : J β Ο) (right : p J), motive β―) β motive x
|
Finset.shadow_mono
|
Mathlib.Combinatorics.SetFamily.Shadow
|
β {Ξ± : Type u_1} [inst : DecidableEq Ξ±] {π β¬ : Finset (Finset Ξ±)}, π β β¬ β π.shadow β β¬.shadow
|
AlgebraicGeometry.Scheme.canonicallyOverPullback
|
Mathlib.AlgebraicGeometry.Pullbacks
|
{M S T : AlgebraicGeometry.Scheme} β
[inst : M.Over S] β {f : T βΆ S} β (CategoryTheory.Limits.pullback (M β S) f).CanonicallyOver T
|
_private.Plausible.Testable.0.Plausible.Decorations._aux_Plausible_Testable___elabRules_Plausible_Decorations_tacticMk_decorations_1.match_1
|
Plausible.Testable
|
(motive : Lean.Expr β Sort u_1) β
(goalType : Lean.Expr) β
((us : List Lean.Level) β
(body : Lean.Expr) β motive ((Lean.Expr.const `Plausible.Decorations.DecorationsOf us).app body)) β
((x : Lean.Expr) β motive x) β motive goalType
|
Int32.ofIntLE_le_iff_le
|
Init.Data.SInt.Lemmas
|
β {a b : β€} (haβ : Int32.minValue.toInt β€ a) (haβ : a β€ Int32.maxValue.toInt) (hbβ : Int32.minValue.toInt β€ b)
(hbβ : b β€ Int32.maxValue.toInt), Int32.ofIntLE a haβ haβ β€ Int32.ofIntLE b hbβ hbβ β a β€ b
|
LieEquiv.map_lie
|
Mathlib.Algebra.Lie.Basic
|
β {R : Type u} {Lβ : Type v} {Lβ : Type w} [inst : CommRing R] [inst_1 : LieRing Lβ] [inst_2 : LieRing Lβ]
[inst_3 : LieAlgebra R Lβ] [inst_4 : LieAlgebra R Lβ] (e : Lβ βββ
Rβ Lβ) (x y : Lβ), e β
x, yβ = β
e x, e yβ
|
Std.DTreeMap.Internal.Impl.getKeyD_filter_key
|
Std.Data.DTreeMap.Internal.Lemmas
|
β {Ξ± : Type u} {Ξ² : Ξ± β Type v} {instOrd : Ord Ξ±} {t : Std.DTreeMap.Internal.Impl Ξ± Ξ²} [Std.TransOrd Ξ±] {f : Ξ± β Bool}
{k fallback : Ξ±} (h : t.WF),
(Std.DTreeMap.Internal.Impl.filter (fun k x => f k) t β―).impl.getKeyD k fallback =
(Option.filter f (t.getKey? k)).getD fallback
|
Dyadic.neg.eq_1
|
Init.Data.Dyadic.Basic
|
Dyadic.zero.neg = Dyadic.zero
|
Lean.PrettyPrinter.Formatter.Context.mk.inj
|
Lean.PrettyPrinter.Formatter
|
β {options : Lean.Options} {table : Lean.Parser.TokenTable} {options_1 : Lean.Options}
{table_1 : Lean.Parser.TokenTable},
{ options := options, table := table } = { options := options_1, table := table_1 } β
options = options_1 β§ table = table_1
|
AddAction.vadd_mem_of_set_mem_fixedBy
|
Mathlib.GroupTheory.GroupAction.FixedPoints
|
β {Ξ± : Type u_1} {G : Type u_2} [inst : AddGroup G] [inst_1 : AddAction G Ξ±] {s : Set Ξ±} {g : G},
s β AddAction.fixedBy (Set Ξ±) g β β {x : Ξ±}, g +α΅₯ x β s β x β s
|
Set.unitEquivUnitsInteger._proof_3
|
Mathlib.RingTheory.DedekindDomain.SInteger
|
β {R : Type u_2} [inst : CommRing R] [inst_1 : IsDedekindDomain R] (S : Set (IsDedekindDomain.HeightOneSpectrum R))
(K : Type u_1) [inst_2 : Field K] [inst_3 : Algebra R K] [inst_4 : IsFractionRing R K] (x : β₯(S.unit K)),
β¨ββx, β―β© * β¨β(βx)β»ΒΉ, β―β© = 1
|
Lean.Lsp.instToJsonCodeActionClientCapabilities
|
Lean.Data.Lsp.CodeActions
|
Lean.ToJson Lean.Lsp.CodeActionClientCapabilities
|
UInt8.or_eq_zero_iff._simp_1
|
Init.Data.UInt.Bitwise
|
β {a b : UInt8}, (a ||| b = 0) = (a = 0 β§ b = 0)
|
Lean.Meta.Grind.Arith.Cutsat.LeCnstrProof.combineDivCoeffs.inj
|
Lean.Meta.Tactic.Grind.Arith.Cutsat.Types
|
β {cβ cβ : Lean.Meta.Grind.Arith.Cutsat.LeCnstr} {k : β€} {cβ_1 cβ_1 : Lean.Meta.Grind.Arith.Cutsat.LeCnstr} {k_1 : β€},
Lean.Meta.Grind.Arith.Cutsat.LeCnstrProof.combineDivCoeffs cβ cβ k =
Lean.Meta.Grind.Arith.Cutsat.LeCnstrProof.combineDivCoeffs cβ_1 cβ_1 k_1 β
cβ = cβ_1 β§ cβ = cβ_1 β§ k = k_1
|
CategoryTheory.preserves_mono_of_preservesLimit
|
Mathlib.CategoryTheory.Limits.Constructions.EpiMono
|
β {C : Type uβ} {D : Type uβ} [inst : CategoryTheory.Category.{vβ, uβ} C] [inst_1 : CategoryTheory.Category.{vβ, uβ} D]
(F : CategoryTheory.Functor C D) {X Y : C} (f : X βΆ Y)
[CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.cospan f f) F] [CategoryTheory.Mono f],
CategoryTheory.Mono (F.map f)
|
Finpartition.part
|
Mathlib.Order.Partition.Finpartition
|
{Ξ± : Type u_1} β [inst : DecidableEq Ξ±] β {s : Finset Ξ±} β Finpartition s β Ξ± β Finset Ξ±
|
MeasureTheory.Lp.ext_iff
|
Mathlib.MeasureTheory.Function.LpSpace.Basic
|
β {Ξ± : Type u_1} {E : Type u_4} {m : MeasurableSpace Ξ±} {p : ENNReal} {ΞΌ : MeasureTheory.Measure Ξ±}
[inst : NormedAddCommGroup E] {f g : β₯(MeasureTheory.Lp E p ΞΌ)}, f = g β ββf =α΅[ΞΌ] ββg
|
LinearMap.coprod_comp_inl_inr
|
Mathlib.LinearAlgebra.Prod
|
β {R : Type u} {M : Type v} {Mβ : Type w} {Mβ : Type y} [inst : Semiring R] [inst_1 : AddCommMonoid M]
[inst_2 : AddCommMonoid Mβ] [inst_3 : AddCommMonoid Mβ] [inst_4 : Module R M] [inst_5 : Module R Mβ]
[inst_6 : Module R Mβ] (f : M Γ Mβ ββ[R] Mβ), (f ββ LinearMap.inl R M Mβ).coprod (f ββ LinearMap.inr R M Mβ) = f
|
Std.DHashMap.Internal.Raw.fold_cons_key
|
Std.Data.DHashMap.Internal.WF
|
β {Ξ± : Type u} {Ξ² : Ξ± β Type v} {l : Std.DHashMap.Raw Ξ± Ξ²} {acc : List Ξ±},
Std.DHashMap.Raw.fold (fun acc k x => k :: acc) acc l =
Std.Internal.List.keys (Std.DHashMap.Internal.toListModel l.buckets).reverse ++ acc
|
_private.Mathlib.Util.FormatTable.0.formatTable.match_1
|
Mathlib.Util.FormatTable
|
(motive : β β Alignment β Sort u_1) β
(w : β) β
(a : Alignment) β
((x : Alignment) β motive 0 x) β
((x : Alignment) β motive 1 x) β
((n : β) β motive n.succ.succ Alignment.left) β
((n : β) β motive n.succ.succ Alignment.right) β
((n : β) β motive n.succ.succ Alignment.center) β motive w a
|
Nat.addUnits_eq_zero
|
Mathlib.Algebra.Group.Nat.Units
|
β (u : AddUnits β), u = 0
|
Filter.EventuallyLE.measure_le
|
Mathlib.MeasureTheory.OuterMeasure.AE
|
β {Ξ± : Type u_1} {F : Type u_3} [inst : FunLike F (Set Ξ±) ENNReal] [inst_1 : MeasureTheory.OuterMeasureClass F Ξ±]
{ΞΌ : F} {s t : Set Ξ±}, s β€α΅[ΞΌ] t β ΞΌ s β€ ΞΌ t
|
Lean.PrettyPrinter.Delaborator.TopDownAnalyze.App.Context.mk.sizeOf_spec
|
Lean.PrettyPrinter.Delaborator.TopDownAnalyze
|
β (f fType : Lean.Expr) (args mvars : Array Lean.Expr) (bInfos : Array Lean.BinderInfo) (forceRegularApp : Bool),
sizeOf
{ f := f, fType := fType, args := args, mvars := mvars, bInfos := bInfos, forceRegularApp := forceRegularApp } =
1 + sizeOf f + sizeOf fType + sizeOf args + sizeOf mvars + sizeOf bInfos + sizeOf forceRegularApp
|
Padic.coe_one
|
Mathlib.NumberTheory.Padics.PadicNumbers
|
β (p : β) [inst : Fact (Nat.Prime p)], β1 = 1
|
LocallyConstant.comapRingHom._proof_1
|
Mathlib.Topology.LocallyConstant.Algebra
|
β {X : Type u_2} {Y : Type u_3} [inst : TopologicalSpace X] [inst_1 : TopologicalSpace Y] {Z : Type u_1}
[inst_2 : Semiring Z] (f : C(X, Y)), (β(LocallyConstant.comapAddMonoidHom f)).toFun 0 = 0
|
AlgebraicGeometry.Scheme.LocalRepresentability.yonedaGluedToSheaf_app_toGlued
|
Mathlib.AlgebraicGeometry.Sites.Representability
|
β {F : CategoryTheory.Sheaf AlgebraicGeometry.Scheme.zariskiTopology (Type u)} {ΞΉ : Type u}
{X : ΞΉ β AlgebraicGeometry.Scheme} {f : (i : ΞΉ) β CategoryTheory.yoneda.obj (X i) βΆ F.val}
(hf : β (i : ΞΉ), AlgebraicGeometry.IsOpenImmersion.presheaf (f i)) {i : ΞΉ},
(AlgebraicGeometry.Scheme.LocalRepresentability.yonedaGluedToSheaf hf).val.app (Opposite.op (X i))
(AlgebraicGeometry.Scheme.LocalRepresentability.toGlued hf i) =
CategoryTheory.yonedaEquiv (f i)
|
fderivPolarCoordSymm._proof_8
|
Mathlib.Analysis.SpecialFunctions.PolarCoord
|
FiniteDimensional β (β Γ β)
|
RingEquiv.nonUnitalSubringCongr
|
Mathlib.RingTheory.NonUnitalSubring.Basic
|
{R : Type u} β [inst : NonUnitalRing R] β {s t : NonUnitalSubring R} β s = t β β₯s β+* β₯t
|
UniqueFactorizationMonoid.radical_mul
|
Mathlib.RingTheory.Radical
|
β {M : Type u_1} [inst : CancelCommMonoidWithZero M] [inst_1 : NormalizationMonoid M]
[inst_2 : UniqueFactorizationMonoid M] {a b : M},
IsRelPrime a b β
UniqueFactorizationMonoid.radical (a * b) =
UniqueFactorizationMonoid.radical a * UniqueFactorizationMonoid.radical b
|
TopologicalSpace.Opens.openPartialHomeomorphSubtypeCoe.eq_1
|
Mathlib.Topology.OpenPartialHomeomorph
|
β {X : Type u_1} [inst : TopologicalSpace X] (s : TopologicalSpace.Opens X) (hs : Nonempty β₯s),
s.openPartialHomeomorphSubtypeCoe hs = Topology.IsOpenEmbedding.toOpenPartialHomeomorph Subtype.val β―
|
CategoryTheory.Lax.StrongTrans.mkOfLax._proof_1
|
Mathlib.CategoryTheory.Bicategory.NaturalTransformation.Lax
|
β {B : Type u_2} [inst : CategoryTheory.Bicategory B] {C : Type u_6} [inst_1 : CategoryTheory.Bicategory C]
{F G : CategoryTheory.LaxFunctor B C} (Ξ· : CategoryTheory.Lax.LaxTrans F G)
(Ξ·' : CategoryTheory.Lax.LaxTrans.StrongCore Ξ·) {a b : B} {f g : a βΆ b} (Ξ·_1 : f βΆ g),
CategoryTheory.CategoryStruct.comp (Ξ·'.naturality f).hom
(CategoryTheory.Bicategory.whiskerRight (F.mapβ Ξ·_1) (Ξ·.app b)) =
CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (Ξ·.app a) (G.mapβ Ξ·_1))
(Ξ·'.naturality g).hom
|
_private.Mathlib.Combinatorics.Enumerative.IncidenceAlgebra.0.IncidenceAlgebra.moebius_inversion_top._simp_1_10
|
Mathlib.Combinatorics.Enumerative.IncidenceAlgebra
|
β {M : Type u_4} [inst : AddMonoid M] [IsLeftCancelAdd M] {a b : M}, (a + b = a) = (b = 0)
|
Std.Iterators.IterM.step_filterMap
|
Init.Data.Iterators.Lemmas.Combinators.Monadic.FilterMap
|
β {Ξ± Ξ² Ξ²' : Type w} {m : Type w β Type w'} [inst : Std.Iterators.Iterator Ξ± m Ξ²] {it : Std.IterM m Ξ²} [inst_1 : Monad m]
[LawfulMonad m] {f : Ξ² β Option Ξ²'},
(Std.Iterators.IterM.filterMap f it).step = do
let __do_lift β it.step
match __do_lift.inflate with
| β¨Std.Iterators.IterStep.yield it' out, hβ© =>
match h' : f out with
| none =>
pure (Std.Shrink.deflate (Std.Iterators.PlausibleIterStep.skip (Std.Iterators.IterM.filterMap f it') β―))
| some out' =>
pure (Std.Shrink.deflate (Std.Iterators.PlausibleIterStep.yield (Std.Iterators.IterM.filterMap f it') out' β―))
| β¨Std.Iterators.IterStep.skip it', hβ© =>
pure (Std.Shrink.deflate (Std.Iterators.PlausibleIterStep.skip (Std.Iterators.IterM.filterMap f it') β―))
| β¨Std.Iterators.IterStep.done, hβ© => pure (Std.Shrink.deflate (Std.Iterators.PlausibleIterStep.done β―))
|
Lean.PrettyPrinter.Delaborator.OmissionReason.noConfusionType
|
Lean.PrettyPrinter.Delaborator.Basic
|
Sort u β Lean.PrettyPrinter.Delaborator.OmissionReason β Lean.PrettyPrinter.Delaborator.OmissionReason β Sort u
|
FinsetFamily._aux_Mathlib_Combinatorics_SetFamily_Compression_UV___unexpand_UV_compression_1
|
Mathlib.Combinatorics.SetFamily.Compression.UV
|
Lean.PrettyPrinter.Unexpander
|
Std.ExtDTreeMap.Const.getKeyD_insertManyIfNewUnit_list_of_not_mem_of_mem
|
Std.Data.ExtDTreeMap.Lemmas
|
β {Ξ± : Type u} {cmp : Ξ± β Ξ± β Ordering} {t : Std.ExtDTreeMap Ξ± (fun x => Unit) cmp} [inst : Std.TransCmp cmp]
{l : List Ξ±} {k k' fallback : Ξ±},
cmp k k' = Ordering.eq β
k β t β
List.Pairwise (fun a b => Β¬cmp a b = Ordering.eq) l β
k β l β (Std.ExtDTreeMap.Const.insertManyIfNewUnit t l).getKeyD k' fallback = k
|
RatFunc.instAlgebraOfPolynomial
|
Mathlib.FieldTheory.RatFunc.Basic
|
(K : Type u) β
[inst : CommRing K] β
[inst_1 : IsDomain K] β
(R : Type u_1) β [inst_2 : CommSemiring R] β [Algebra R (Polynomial K)] β Algebra R (RatFunc K)
|
CategoryTheory.ShortComplex.hasLeftHomology_of_epi_of_isIso_of_mono'
|
Mathlib.Algebra.Homology.ShortComplex.LeftHomology
|
β {C : Type u_1} [inst : CategoryTheory.Category.{u_2, u_1} C] [inst_1 : CategoryTheory.Limits.HasZeroMorphisms C]
{Sβ Sβ : CategoryTheory.ShortComplex C} (Ο : Sβ βΆ Sβ) [Sβ.HasLeftHomology] [CategoryTheory.Epi Ο.Οβ]
[CategoryTheory.IsIso Ο.Οβ] [CategoryTheory.Mono Ο.Οβ], Sβ.HasLeftHomology
|
Turing.EvalsTo.mk.inj
|
Mathlib.Computability.TMComputable
|
β {Ο : Type u_1} {f : Ο β Option Ο} {a : Ο} {b : Option Ο} {steps : β}
{evals_in_steps : (flip bind f)^[steps] (some a) = b} {steps_1 : β}
{evals_in_steps_1 : (flip bind f)^[steps_1] (some a) = b},
{ steps := steps, evals_in_steps := evals_in_steps } = { steps := steps_1, evals_in_steps := evals_in_steps_1 } β
steps = steps_1
|
End of preview. Expand
in Data Studio
Mathlib Types
This dataset contains information about types defined in Mathlib, the mathematical library for the Lean 4 theorem prover, extracted using lean_scout.
Extracted from the Mathlib commit with the following hash:
89ec9c848cb1c5922fa50b91eb5156a46bd71e85
The dataset follows this schema:
fields:
- type:
datatype: string
nullable: false
name: name
- type:
datatype: string
nullable: true
name: module
- type:
datatype: string
nullable: false
name: type
- Downloads last month
- 22