EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation
Paper
•
2406.06185
•
Published
audio
audioduration (s) 0.47
235
| name
stringlengths 26
39
|
|---|---|
p001/emo_adoration_freeform_0.ogg
|
|
p001/emo_adoration_sentences_0.ogg
|
|
p001/emo_amazement_freeform_0.ogg
|
|
p001/emo_amazement_sentences_0.ogg
|
|
p001/emo_amusement_freeform_0.ogg
|
|
p001/emo_amusement_sentences_0.ogg
|
|
p001/emo_anger_freeform_0.ogg
|
|
p001/emo_anger_sentences_0.ogg
|
|
p001/emo_confusion_freeform_0.ogg
|
|
p001/emo_confusion_sentences_0.ogg
|
|
p001/emo_contentment_freeform_0.ogg
|
|
p001/emo_contentment_sentences_0.ogg
|
|
p001/emo_cuteness_freeform_0.ogg
|
|
p001/emo_cuteness_sentences_0.ogg
|
|
p001/emo_desire_freeform_0.ogg
|
|
p001/emo_desire_sentences_0.ogg
|
|
p001/emo_disappointment_freeform_0.ogg
|
|
p001/emo_disappointment_sentences_0.ogg
|
|
p001/emo_disgust_freeform_0.ogg
|
|
p001/emo_disgust_sentences_0.ogg
|
|
p001/emo_distress_freeform_0.ogg
|
|
p001/emo_distress_sentences_0.ogg
|
|
p001/emo_embarassment_freeform_0.ogg
|
|
p001/emo_embarassment_sentences_0.ogg
|
|
p001/emo_extasy_freeform_0.ogg
|
|
p001/emo_extasy_sentences_0.ogg
|
|
p001/emo_fear_freeform_0.ogg
|
|
p001/emo_fear_sentences_0.ogg
|
|
p001/emo_guilt_freeform_0.ogg
|
|
p001/emo_guilt_sentences_0.ogg
|
|
p001/emo_interest_freeform_0.ogg
|
|
p001/emo_interest_sentences_0.ogg
|
|
p001/emo_neutral_freeform_0.ogg
|
|
p001/emo_neutral_sentences_0.ogg
|
|
p001/emo_pain_freeform_0.ogg
|
|
p001/emo_pain_sentences_0.ogg
|
|
p001/emo_pride_freeform_0.ogg
|
|
p001/emo_pride_sentences_0.ogg
|
|
p001/emo_realization_freeform_0.ogg
|
|
p001/emo_realization_sentences_0.ogg
|
|
p001/emo_relief_freeform_0.ogg
|
|
p001/emo_relief_sentences_0.ogg
|
|
p001/emo_sadness_freeform_0.ogg
|
|
p001/emo_sadness_sentences_0.ogg
|
|
p001/emo_serenity_freeform_0.ogg
|
|
p001/emo_serenity_sentences_0.ogg
|
|
p001/freeform_speech_01_0.ogg
|
|
p001/freeform_speech_02_0.ogg
|
|
p001/freeform_speech_03_0.ogg
|
|
p001/freeform_speech_04_0.ogg
|
|
p001/freeform_speech_05_0.ogg
|
|
p001/freeform_speech_06_0.ogg
|
|
p001/interjection_agreement_0.ogg
|
|
p001/interjection_anger_0.ogg
|
|
p001/interjection_congratulations_0.ogg
|
|
p001/interjection_filler_0.ogg
|
|
p001/interjection_greetings_0.ogg
|
|
p001/melodic_happy_birthday_0.ogg
|
|
p001/nonverbal_cheering_0.ogg
|
|
p001/nonverbal_crying_0.ogg
|
|
p001/nonverbal_laughter_closed_0.ogg
|
|
p001/nonverbal_laughter_open_0.ogg
|
|
p001/nonverbal_screaming_0.ogg
|
|
p001/nonverbal_yelling_0.ogg
|
|
p001/rainbow_01_fast_0.ogg
|
|
p001/rainbow_01_highpitch_0.ogg
|
|
p001/rainbow_01_loud_0.ogg
|
|
p001/rainbow_01_lowpitch_0.ogg
|
|
p001/rainbow_01_regular_0.ogg
|
|
p001/rainbow_01_slow_0.ogg
|
|
p001/rainbow_01_whisper_0.ogg
|
|
p001/rainbow_02_fast_0.ogg
|
|
p001/rainbow_02_highpitch_0.ogg
|
|
p001/rainbow_02_loud_0.ogg
|
|
p001/rainbow_02_lowpitch_0.ogg
|
|
p001/rainbow_02_regular_0.ogg
|
|
p001/rainbow_02_slow_0.ogg
|
|
p001/rainbow_02_whisper_0.ogg
|
|
p001/rainbow_03_fast_0.ogg
|
|
p001/rainbow_03_highpitch_0.ogg
|
|
p001/rainbow_03_loud_0.ogg
|
|
p001/rainbow_03_lowpitch_0.ogg
|
|
p001/rainbow_03_regular_0.ogg
|
|
p001/rainbow_03_slow_0.ogg
|
|
p001/rainbow_03_whisper_0.ogg
|
|
p001/rainbow_04_fast_0.ogg
|
|
p001/rainbow_04_highpitch_0.ogg
|
|
p001/rainbow_04_loud_0.ogg
|
|
p001/rainbow_04_lowpitch_0.ogg
|
|
p001/rainbow_04_regular_0.ogg
|
|
p001/rainbow_04_slow_0.ogg
|
|
p001/rainbow_04_whisper_0.ogg
|
|
p001/rainbow_05_fast_0.ogg
|
|
p001/rainbow_05_highpitch_0.ogg
|
|
p001/rainbow_05_loud_0.ogg
|
|
p001/rainbow_05_lowpitch_0.ogg
|
|
p001/rainbow_05_regular_0.ogg
|
|
p001/rainbow_05_slow_0.ogg
|
|
p001/rainbow_05_whisper_0.ogg
|
|
p001/rainbow_06_fast_0.ogg
|
This is a mirror of the Expressive Anechoic Recordings of Speech (EARS) dataset. The original files were converted from WAV to Opus to reduce the size and accelerate streaming.
import io
import soundfile as sf
from datasets import Features, Value, load_dataset
for item in load_dataset(
"philgzl/ears",
split="train",
streaming=True,
features=Features({"audio": Value("binary"), "name": Value("string")}),
):
print(item["name"])
buffer = io.BytesIO(item["audio"])
x, fs = sf.read(buffer)
# do stuff...
@inproceedings{richter2024ears,
title = {{EARS}: {An} anechoic fullband speech dataset benchmarked for speech enhancement and dereverberation},
author = {Richter, Julius and Wu, Yi-Chiao and Krenn, Steven and Welker, Simon and Lay, Bunlong and Watanabe, Shinjii and Richard, Alexander and Gerkmann, Timo},
booktitle = {Proc. Interspeech},
pages = {4873--4877},
year = {2024},
}