Datasets:
The dataset viewer should be available soon. Please retry later.
YODAS2-Sidon
Overview
This dataset is a cleansed version of YODAS-2 with Sidon speech restoration mode for Speech Synthesis and Spoken Language Modeling.
YODAS-2 is a massive, multilingual YouTube-derived dataset. We have applied the Sidon restoration model to remove background noise and enhance audio quality, making it suitable for high-quality generation tasks. We resampled original sidon output to 24kHz due to a storage constraints.
The dataset is provided in WebDataset format for efficient large-scale training.
- Source: YODAS-2 (YouTube-Oriented Dataset for Audio-Visual Speech)
- Format: WebDataset (
.tar.gzshards) - License: CC-BY-3.0
Dataset Structure
Each sample in the dataset contains:
flac— audio file (24 kHz, single channel, restored)metadata.json(optional) — metadata including language, YouTube video ID, and transcription
Example (inside a .tar shard):
000001.flac
000001.metadata.json
000002.flac
000002.metadata.json
...
How to Use
With 🤗 Datasets
You can load the WebDataset directly with Hugging Face’s datasets library:
from datasets import load_dataset
from huggingface_hub import list_repo_files
repo_id = "sarulab-speech/yodas2_sidon"
subset="en000"
all_files = list_repo_files(repo_id, repo_type="dataset")
urls = [
f"https://huggingface.co/datasets/{repo_id}/resolve/main/{f}"
for f in sorted(all_files)
if f.endswith(".tar.gz") and f.startswith(subset)
]
print(f"Found {len(urls)} shards.")
dataset = load_dataset(
"webdataset",
data_files={"train": urls},
streaming=True
)['train']
from IPython.display import Audio
sample = next(iter(dataset))
audio = sample['flac']
print(sample['metadata.json'])
Audio(audio['array'], rate=audio['sampling_rate'])
Replace subset with the desired subset.
Citation
If you use this dataset, please cite Sidon and the original YODAS paper:
@misc{nakata2025sidonfastrobustopensource,
title={Sidon: Fast and Robust Open-Source Multilingual Speech Restoration for Large-scale Dataset Cleansing},
author={Wataru Nakata and Yuki Saito and Yota Ueda and Hiroshi Saruwatari},
year={2025},
eprint={2509.17052},
archivePrefix={arXiv},
primaryClass={cs.SD},
url={[https://arxiv.org/abs/2509.17052](https://arxiv.org/abs/2509.17052)},
}
@inproceedings{li2023yodas,
title={Yodas: Youtube-Oriented Dataset for Audio and Speech},
author={Li, Xinjian and Takamichi, Shinnosuke and Saeki, Takaaki and Chen, William and Shiota, Sayaka and Watanabe, Shinji},
booktitle={2023 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)},
pages={1--8},
year={2023},
organization={IEEE}
}
License
This dataset is released under CC-BY-3.0.
Acknowledgements
- Original data: YODAS2
- Downloads last month
- 6,419