Transformers documentation
GlmAsr
This model was released on {release_date} and added to Hugging Face Transformers on 2025-12-15.
GlmAsr
Overview
GLM-ASR-Nano-2512 is a robust, open-source speech recognition model with 1.5B parameters. Designed for real-world complexity, it outperforms OpenAI Whisper V3 on multiple benchmarks while maintaining a compact size.
Key capabilities include:
Exceptional Dialect Support Beyond standard Mandarin and English, the model is highly optimized for Cantonese (粤语) and other dialects, effectively bridging the gap in dialectal speech recognition.
Low-Volume Speech Robustness Specifically trained for “Whisper/Quiet Speech” scenarios. It captures and accurately transcribes extremely low-volume audio that traditional models often miss.
SOTA Performance Achieves the lowest average error rate (4.10) among comparable open-source models, showing significant advantages in Chinese benchmarks (Wenet Meeting, Aishell-1, etc..).
This model was contributed by Eustache Le Bihan and Yuxuan Zhang. you can check the model card for more details and our github repo.
Usage
Basic usage
<options id="usage"> <hfoption id="AutoModel">from transformers import AutoModelForSeq2SeqLM, AutoProcessor
processor = AutoProcessor.from_pretrained("zai-org/GLM-ASR-Nano-2512")
model = AutoModelForSeq2SeqLM.from_pretrained("zai-org/GLM-ASR-Nano-2512", dtype="auto", device_map="auto")
inputs = processor.apply_transcription_request("https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/bcn_weather.mp3")
inputs = inputs.to(model.device, dtype=model.dtype)
outputs = model.generate(**inputs, do_sample=False, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1] :], skip_special_tokens=True)
print(decoded_outputs)Advanced usage
The processor’s apply_transcription_request is equivalent to using the chat template in the following manner:
from transformers import GlmAsrForConditionalGeneration, AutoProcessor
processor = GlmAsrForConditionalGeneration.from_pretrained("zai-org/GLM-ASR-Nano-2512")
inputs = processor.apply_transcription_request("https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/bcn_weather.mp3")
# which is equivalent to
conversation = [
{
"role": "user",
"content": [
{
"type": "audio",
"url": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/bcn_weather.mp3",
},
{"type": "text", "text": "Please transcribe this audio into text"},
],
},
]
inputs = processor.apply_chat_template(
conversation,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
)One can also use audio arrays directly:
from transformers import GlmAsrForConditionalGeneration, AutoProcessor
from datasets import load_dataset
processor = AutoProcessor.from_pretrained("zai-org/GLM-ASR-Nano-2512")
model = GlmAsrForConditionalGeneration.from_pretrained("zai-org/GLM-ASR-Nano-2512", dtype="auto", device_map="auto")
# loading audio directly from dataset
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
ds = ds.cast_column("audio", Audio(sampling_rate=processor.feature_extractor.sampling_rate))
audio_array = ds[0]["audio"]["array"]
inputs = processor.apply_transcription_request(audio_array)
inputs = inputs.to(model.device, dtype=model.dtype)
outputs = model.generate(**inputs, do_sample=False, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1] :], skip_special_tokens=True)
print(decoded_outputs)Batched inference
You can process multiple audio files at once:
from transformers import GlmAsrForConditionalGeneration, AutoProcessor
processor = AutoProcessor.from_pretrained("zai-org/GLM-ASR-Nano-2512")
model = GlmAsrForConditionalGeneration.from_pretrained("zai-org/GLM-ASR-Nano-2512", dtype="auto", device_map="auto")
inputs = processor.apply_transcription_request([
"https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/bcn_weather.mp3",
"https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/obama.mp3",
])
inputs = inputs.to(model.device, dtype=model.dtype)
outputs = model.generate(**inputs, do_sample=False, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1] :], skip_special_tokens=True)
print(decoded_outputs)GlmAsrEncoderConfig
class transformers.GlmAsrEncoderConfig
< source >( hidden_size = 1280 intermediate_size = 5120 num_hidden_layers = 32 num_attention_heads = 20 num_key_value_heads = None hidden_act = 'gelu' max_position_embeddings = 1500 initializer_range = 0.02 rope_parameters = None attention_dropout = 0.0 num_mel_bins = 128 **kwargs )
Parameters
- hidden_size (
int, optional, defaults to 1280) — Dimensionality of the hidden representations. - intermediate_size (
int, optional, defaults to 5120) — Dimension of the MLP representations. - num_hidden_layers (
int, optional, defaults to 32) — Number of hidden layers in the Transformer encoder. - num_attention_heads (
int, optional, defaults to 20) — Number of attention heads for each attention layer in the Transformer encoder. - num_key_value_heads (
int, optional) — This is the number of key_value heads that should be used to implement Grouped Query Attention. Ifnum_key_value_heads=num_attention_heads, the model will use Multi Head Attention (MHA), ifnum_key_value_heads=1the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details, check out this paper. If it is not specified, will default tonum_attention_heads. - hidden_act (
strorfunction, optional, defaults to"gelu") — The non-linear activation function (function or string) in the encoder and pooler. - max_position_embeddings (
int, optional, defaults to 1500) — The maximum sequence length that this model might ever be used with. - initializer_range (
float, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices. - rope_parameters (
RopeParameters, optional) — Dictionary containing the configuration parameters for the RoPE embeddings. The dictionary should contain a value forrope_thetaand optionally parameters used for scaling in case you want to use RoPE with longermax_position_embeddings. - attention_dropout (
float, optional, defaults to 0.0) — The dropout ratio for the attention probabilities. - num_mel_bins (
int, optional, defaults to 128) — Number of mel features used per input features. Should correspond to the value used in theGlmAsrProcessorclass.
This is the configuration class to store the configuration of a GlmAsrEncoder. It is used to instantiate a glmasr audio encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the audio encoder of the glmasr architecture.
e.g. zai-org/GLM-ASR-Nano-2512
Configuration objects inherit from PreTrainedConfig and can be used to control the model outputs. Read the documentation from PreTrainedConfig for more information.
>>> from transformers import GlmAsrEncoderConfig, GlmAsrEncoder
>>> # Initializing a GlmAsrEncoderConfig
>>> configuration = GlmAsrEncoderConfig()
>>> # Initializing a GlmAsrEncoder (with random weights)
>>> model = GlmAsrEncoder(configuration)
>>> # Accessing the model configuration
>>> configuration = model.configGlmAsrConfig
class transformers.GlmAsrConfig
< source >( audio_config = None text_config = None audio_token_id = 59260 projector_hidden_act = 'gelu' **kwargs )
Parameters
- audio_config (
Union[AutoConfig, dict], optional) — The config object or dictionary of the audio encoder. - text_config (
Union[AutoConfig, dict], optional) — The config object or dictionary of the text model. - audio_token_id (
int, optional, defaults to 59260) — The audio token index to encode the audio prompt. - projector_hidden_act (
str, optional, defaults to"gelu") — The activation function (function or string) in the multi-modal projector.
This is the configuration class to store the configuration of a GlmAsrForConditionalGeneration. It is used to instantiate an glmasr model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the glmasr-Mini-3B.
e.g. zai-org/GLM-ASR-Nano-2512
Configuration objects inherit from PreTrainedConfig and can be used to control the model outputs. Read the documentation from PreTrainedConfig for more information.
>>> from transformers import GlmAsrForConditionalGeneration, GlmAsrConfig
>>> # Initializing a glmasr configuration
>>> configuration = GlmAsrConfig()
>>> # Initializing a GLM-ASR-Nano-2512 model with random weights
>>> model = GlmAsrForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.configGlmAsrPreTrainedModel
class transformers.GlmAsrPreTrainedModel
< source >( config: PreTrainedConfig *inputs **kwargs )
Parameters
- config (PreTrainedConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
Define the computation performed at every call.
Should be overridden by all subclasses.
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
GlmAsrProcessor
class transformers.GlmAsrProcessor
< source >( feature_extractor tokenizer chat_template = None audio_token = '<|pad|>' default_transcription_prompt = 'Please transcribe this audio into text' max_audio_len = 655 )
Parameters
- feature_extractor (WhisperFeatureExtractor) — The feature extractor is a required input.
- tokenizer (Qwen2TokenizerFast) — The tokenizer is a required input.
- chat_template (
Optional[str], optional) — The Jinja template to use for formatting the conversation. If not provided, the tokenizer’s default chat template will be used. - audio_token (
Optional[str], optional, defaults to"<|pad|>”) — Special token used to represent audio inputs in the chat template. - default_transcription_prompt (
str, optional, defaults to"Please transcribe this audio into text") — Default prompt to use for transcription tasks when applying transcription requests. - max_audio_len (
int, optional, defaults to 655) — Maximum length of audio sequences in seconds. Audio longer than this will be truncated. 655 gives approximately 8192 tokens, corresponding to the maximum sequence length of the text model.
Constructs an GlmAsr processor which wraps an GlmAsr feature extractor and an GlmAsr tokenizer into a single processor.
GlmAsrProcessor offers all the functionalities of WhisperFeatureExtractor and
Qwen2TokenizerFast. See the __call__() for more information.
apply_transcription_request
< source >( audio: typing.Union[str, list[str], numpy.ndarray, ForwardRef('torch.Tensor'), collections.abc.Sequence[numpy.ndarray], collections.abc.Sequence['torch.Tensor']] prompt: typing.Union[str, list[str], NoneType] = None **kwargs: typing_extensions.Unpack[transformers.models.glmasr.processing_glmasr.GlmAsrProcessorKwargs] ) → BatchFeature
Parameters
- audio (
str,list[str],np.ndarray,torch.Tensor,list[np.ndarray],list[torch.Tensor]) — Audio to transcribe. Strings are interpreted as local paths or URLs and will be loaded automatically by the chat template loader; NumPy arrays and PyTorch tensors are forwarded directly. - prompt (
strorlist[str], optional) — Custom prompt(s) to include in the user turn. A list must be the same length as the batch. WhenNone, each sample uses"Transcribe the input speech.". - **kwargs —
Additional keyword arguments forwarded to apply_chat_template() (for example
text_kwargs,audio_kwargs, …).
Returns
Processor outputs ready to be passed to AudioFlamingo3ForConditionalGeneration.generate().
Prepare inputs for automatic speech recognition without manually writing the default transcription prompt.
Forward arguments to batch_decode() and optionally remove the assistant framing the model was trained to produce.
AF3 transcription requests respond with sentences such as "The spoken content of the audio is "...".".
Setting strip_prefix=True trims the fixed prefix for just the transcription text.
GlmAsrEncoder
forward
< source >( input_features **kwargs: typing_extensions.Unpack[transformers.utils.generic.TransformersKwargs] )
Parameters
- input_features (`
of shape(batch_size, sequence_length, feature_dim)`) — The tensors corresponding to the input audio features. Audio features can be obtained using WhisperFeatureExtractor. See WhisperFeatureExtractor.call() for details (GlmAsrProcessor uses WhisperFeatureExtractor for processing audios).
The GlmAsrEncoder forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
GlmAsrForConditionalGeneration
class transformers.GlmAsrForConditionalGeneration
< source >( config )
Parameters
- config (GlmAsrForConditionalGeneration) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The GlmAsr model which consists of a fine-tuned Whisper encoder, a multi-modal projector and a Llama language model.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None input_features: typing.Optional[torch.FloatTensor] = None input_features_mask: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **kwargs: typing_extensions.Unpack[transformers.utils.generic.TransformersKwargs] ) → transformers.modeling_outputs.CausalLMOutputWithPast or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- input_features (
torch.FloatTensorof shape(batch_size, sequence_length, feature_dim), optional) — The tensors corresponding to the input audio features. Audio features can be obtained using WhisperFeatureExtractor. See WhisperFeatureExtractor.call() for details (GlmAsrProcessor uses WhisperFeatureExtractor for processing audios). - input_features_mask (
torch.Tensorof shape(batch_size, feature_sequence_length)) — Mask to avoid performing attention on padding feature indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- position_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.n_positions - 1]. - past_key_values (
~cache_utils.Cache, optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in thepast_key_valuesreturned by the model at a previous stage of decoding, whenuse_cache=Trueorconfig.use_cache=True.Only Cache instance is allowed as input, see our kv cache guide. If no
past_key_valuesare passed, DynamicCache will be initialized by default.The model will output the same cache format that is fed as input.
If
past_key_valuesare used, the user is expected to input only unprocessedinput_ids(those that don’t have their past key value states given to this model) of shape(batch_size, unprocessed_length)instead of allinput_idsof shape(batch_size, sequence_length). - inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix. - labels (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Labels for computing the masked language modeling loss. Indices should either be in[0, ..., config.vocab_size]or -100 (seeinput_idsdocstring). Tokens with indices set to-100are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size]. - use_cache (
bool, optional) — If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values). - cache_position (
torch.LongTensorof shape(sequence_length), optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily toposition_ids, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. - logits_to_keep (
Union[int, torch.Tensor], optional, defaults to0) — If anint, compute logits for the lastlogits_to_keeptokens. If0, calculate logits for allinput_ids(special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If atorch.Tensor, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns
transformers.modeling_outputs.CausalLMOutputWithPast or tuple(torch.FloatTensor)
A transformers.modeling_outputs.CausalLMOutputWithPast or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (GlmAsrConfig) and inputs.
-
loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) — Language modeling loss (for next-token prediction). -
logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). -
past_key_values (
Cache, optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) — It is a Cache instance. For more details, see our kv cache guide.Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding. -
hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) — Tuple oftorch.FloatTensor(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) — Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The GlmAsrForConditionalGeneration forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
>>> from transformers import GlmAsrForConditionalGeneration, AutoProcessor
>>> model_id = "zai-org/GLM-ASR-Nano-2512"
>>> processor = AutoProcessor.from_pretrained(model_id)
>>> model = GlmAsrForConditionalGeneration.from_pretrained(model_id, dtype="auto", device_map="auto")
>>> inputs = processor.apply_transcription_request("https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/bcn_weather.mp3")
>>> inputs = inputs.to(model.device, dtype=model.dtype)
>>> outputs = model.generate(**inputs, do_sample=False, max_new_tokens=500)
>>> decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1] :], skip_special_tokens=True)
>>> print(decoded_outputs)