Matryoshka Representation Learning
Paper
•
2205.13147
•
Published
•
25
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("northstaranlyticsma24/artic_ft_midterm")
# Run inference
sentences = [
'What topics were discussed during the meetings related to the development of the Blueprint for an AI Bill of Rights?',
'SECTION: LISTENING TO THE AMERICAN PEOPLE\nAPPENDIX\n• OSTP conducted meetings with a variety of stakeholders in the private sector and civil society. Some of these\nmeetings were specifically focused on providing ideas related to the development of the Blueprint for an AI\nBill of Rights while others provided useful general context on the positive use cases, potential harms, and/or\noversight possibilities for these technologies.',
' \nGAI systems can produce content that is inciting, radicalizing, or threatening, or that glorifies violence, \nwith greater ease and scale than other technologies. LLMs have been reported to generate dangerous or \nviolent recommendations, and some models have generated actionable instructions for dangerous or \n \n \n9 Confabulations of falsehoods are most commonly a problem for text-based outputs; for audio, image, or video \ncontent, creative generation of non-factual content can be a desired behavior. 10 For example, legal confabulations have been shown to be pervasive in current state-of-the-art LLMs. See also, \ne.g., \n \n7 \nunethical behavior.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
InformationRetrievalEvaluator| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.7609 |
| cosine_accuracy@3 | 0.8696 |
| cosine_accuracy@5 | 0.913 |
| cosine_accuracy@10 | 0.9783 |
| cosine_precision@1 | 0.7609 |
| cosine_precision@3 | 0.2899 |
| cosine_precision@5 | 0.1826 |
| cosine_precision@10 | 0.0978 |
| cosine_recall@1 | 0.7609 |
| cosine_recall@3 | 0.8696 |
| cosine_recall@5 | 0.913 |
| cosine_recall@10 | 0.9783 |
| cosine_ndcg@10 | 0.8567 |
| cosine_mrr@10 | 0.819 |
| cosine_map@100 | 0.8204 |
| dot_accuracy@1 | 0.7609 |
| dot_accuracy@3 | 0.8696 |
| dot_accuracy@5 | 0.913 |
| dot_accuracy@10 | 0.9783 |
| dot_precision@1 | 0.7609 |
| dot_precision@3 | 0.2899 |
| dot_precision@5 | 0.1826 |
| dot_precision@10 | 0.0978 |
| dot_recall@1 | 0.7609 |
| dot_recall@3 | 0.8696 |
| dot_recall@5 | 0.913 |
| dot_recall@10 | 0.9783 |
| dot_ndcg@10 | 0.8567 |
| dot_mrr@10 | 0.819 |
| dot_map@100 | 0.8204 |
sentence_0 and sentence_1| sentence_0 | sentence_1 | |
|---|---|---|
| type | string | string |
| details |
|
|
| sentence_0 | sentence_1 |
|---|---|
What are the five principles outlined in the Blueprint for an AI Bill of Rights intended to protect against? |
SECTION: USING THIS TECHNICAL COMPANION |
How does the technical companion suggest that automated systems should be monitored and reported on to ensure transparency and protect individual rights? |
SECTION: USING THIS TECHNICAL COMPANION |
What is the significance of the number 14 in the given context? |
14 |
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
eval_strategy: stepsper_device_train_batch_size: 20per_device_eval_batch_size: 20num_train_epochs: 5multi_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 20per_device_eval_batch_size: 20per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin| Epoch | Step | cosine_map@100 |
|---|---|---|
| 1.0 | 19 | 0.7434 |
| 2.0 | 38 | 0.7973 |
| 2.6316 | 50 | 0.8048 |
| 3.0 | 57 | 0.8048 |
| 4.0 | 76 | 0.8204 |
| 5.0 | 95 | 0.8204 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
Snowflake/snowflake-arctic-embed-m