|
|
--- |
|
|
library_name: transformers.js |
|
|
license: cc-by-nc-sa-4.0 |
|
|
base_model: |
|
|
- mp-02/layoutlmv3-base-cord |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
datasets: |
|
|
- mp-02/cord |
|
|
metrics: |
|
|
- precision |
|
|
- recall |
|
|
- f1 |
|
|
- accuracy |
|
|
model-index: |
|
|
- name: layoutlmv3-base-cord |
|
|
results: |
|
|
- task: |
|
|
name: Token Classification |
|
|
type: token-classification |
|
|
dataset: |
|
|
name: mp-02/cord |
|
|
type: mp-02/cord |
|
|
metrics: |
|
|
- name: Precision |
|
|
type: precision |
|
|
value: 0.9752270850536746 |
|
|
- name: Recall |
|
|
type: recall |
|
|
value: 0.9784589892294946 |
|
|
- name: F1 |
|
|
type: f1 |
|
|
value: 0.976840363937138 |
|
|
- name: Accuracy |
|
|
type: accuracy |
|
|
value: 0.973924977127173 |
|
|
pipeline_tag: token-classification |
|
|
--- |
|
|
|
|
|
|
|
|
|
|
|
# layoutlmv3-base-cord (ONNX) |
|
|
|
|
|
|
|
|
This is an ONNX version of [mp-02/layoutlmv3-base-cord](https://huggingface.co/mp-02/layoutlmv3-base-cord). It was automatically converted and uploaded using [this Hugging Face Space](https://huggingface.co/spaces/onnx-community/convert-to-onnx). |
|
|
|
|
|
|
|
|
## Usage with Transformers.js |
|
|
|
|
|
|
|
|
See the pipeline documentation for `token-classification`: https://huggingface.co/docs/transformers.js/api/pipelines#module_pipelines.TokenClassificationPipeline |
|
|
|
|
|
|
|
|
--- |
|
|
|
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# layoutlmv3-base-cord |
|
|
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the mp-02/cord dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 0.1517 |
|
|
- Precision: 0.9752 |
|
|
- Recall: 0.9785 |
|
|
- F1: 0.9768 |
|
|
- Accuracy: 0.9739 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 2e-05 |
|
|
- train_batch_size: 16 |
|
|
- eval_batch_size: 16 |
|
|
- seed: 42 |
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
|
- lr_scheduler_type: linear |
|
|
- training_steps: 3000 |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
|
| No log | 2.0 | 100 | 0.8667 | 0.7592 | 0.8202 | 0.7885 | 0.8097 | |
|
|
| No log | 4.0 | 200 | 0.3443 | 0.9122 | 0.9387 | 0.9253 | 0.9222 | |
|
|
| No log | 6.0 | 300 | 0.2128 | 0.9345 | 0.9569 | 0.9456 | 0.9579 | |
|
|
| No log | 8.0 | 400 | 0.1745 | 0.9440 | 0.9635 | 0.9537 | 0.9629 | |
|
|
| 0.6362 | 10.0 | 500 | 0.1594 | 0.9559 | 0.9702 | 0.9630 | 0.9684 | |
|
|
| 0.6362 | 12.0 | 600 | 0.1720 | 0.9630 | 0.9693 | 0.9661 | 0.9629 | |
|
|
| 0.6362 | 14.0 | 700 | 0.1528 | 0.9607 | 0.9710 | 0.9658 | 0.9675 | |
|
|
| 0.6362 | 16.0 | 800 | 0.1460 | 0.9638 | 0.9718 | 0.9678 | 0.9680 | |
|
|
| 0.6362 | 18.0 | 900 | 0.1609 | 0.9614 | 0.9702 | 0.9658 | 0.9648 | |
|
|
| 0.0536 | 20.0 | 1000 | 0.1517 | 0.9752 | 0.9785 | 0.9768 | 0.9739 | |
|
|
| 0.0536 | 22.0 | 1100 | 0.1901 | 0.9614 | 0.9693 | 0.9653 | 0.9657 | |
|
|
| 0.0536 | 24.0 | 1200 | 0.1867 | 0.9638 | 0.9718 | 0.9678 | 0.9666 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.44.2 |
|
|
- Pytorch 2.4.0+cu118 |
|
|
- Datasets 2.21.0 |
|
|
- Tokenizers 0.19.1 |
|
|
|