AI & ML interests

Contributors who are invited to beta-test our next big feature! Contact us if you want to join this team :-)

eugenesiow 
posted an update 9 months ago
view post
Post
1915
GPT-4.1 dropped this week - and it puts OpenAI back in the race for coding & agentic leadership.

⚙️ API only - no ChatGPT toggle for this.
💻 Coding performance is back on par with Claude 3.7 Sonnet & Gemini 2.5 Pro (though Gemini still leads).
💸 Pricing:
• Full: $3.50 / 1M tokens
• Mini: $0.70 / 1M
• Nano: $0.17 / 1M
👉 Gemini 2.5 Pro = best price/perf ($3.44 / 1M)
😵 Claude 3.5 Sonnet = $6 / 1M (!)

🧠 Not a "thinking" model.
📊 Mini shines on general reasoning tasks (e.g. GPQA), but only the full model holds up in SWE-bench-verified (GitHub issue solving).
giux78 
posted an update 9 months ago
view post
Post
2411
LLAMA4 release highlight the importance of political and social bias. According to their own evaluation described in the release blog post:
- Refusals on contentious prompts dropped from 7% (hashtag#LLAMA 3.3) to under 2%
- Unequal response refusals are now under 1%
- Political lean bias is said to be halved compared to hashtag#LLaMA 3.3 and comparable to Grok

However, we @efederici @mferraretto @FinancialSupport and I released some weeks ago an independent open source benchmark called Propaganda to measure political bias in LLMs: https://github.com/mii-llm/propaganda

In the chart below, we evaluated multiple leading models on the basis of ratings across a range of prompts designed to expose ideological leanings.

Despite Meta’s stated neutrality goals, LLAMA4 ranks at the very top in terms of total ratings aligned with a clear ideological bias. The models were tested on their ability to respond even-handedly to politically sensitive prompts. LLaMA 4 scored even higher than models known for strong alignment policies like GPT-4o.

LLMs may be refusing less, but they still show bias through content framing. This suggests that refusal rates alone are not a sufficient measure of ideological bias. Relying solely on internal evaluations from AI labs also raises concerns about transparency and objectivity.
giux78 
posted an update 10 months ago
view post
Post
3243
This is truly an inspirational story please help us spread the word, @clem , @thomwolf and everyone who supports open source AI.

A few weeks ago, @mmuffo94 and @cittiberto from indigo_ai launched the Chatbot Arena for the Italian language: https://indigo.ai/it/chatbot-arena-italia/.

To our surprise, among the top-ranked models is mii-llm/maestrale-chat-v0.4-beta a carefully fine-tuned version of mistralai/Mistral-7B-v0.1, developed by @efederici and @mferraretto from
mii-llm
, and released nearly a year ago.

At this very moment, as shown in the screenshot, mii-llm/maestrale-chat-v0.4-beta is ranked 8th right between ChatGPT-4.5 and ChatGPT-4o.

It's likely that for several months, the best Italian speaking LLM has been an open source 7B model created by open source contributors and hardly anyone knew it.
  • 2 replies
·
giux78 
posted an update 10 months ago
view post
Post
2911
@ mii-llm with @efederici @mferraretto @FinancialSupport and @DeepMount00 we just released #Propaganda a framework designed to evaluate and train LLMs on political opinions and bias. We aim to analyze both open-source and closed-source LLMs to understand the political positions and biases expressed in their outputs. Moreover we provide a set of recipes to enforce political positions into the models by creating ad hoc curated datasets and by applying fine tuning techniques. By releasing our work in the open, we hope to foster contributions: https://github.com/mii-llm/propaganda

This framework offers opportunities for expansion in various directions and could become the standard reference for evaluating LLMs on political topics, particularly those that influence public opinion.
rwightman 
posted an update 12 months ago
view post
Post
2386
I re-worked the JuptyerLab Space template recently. It's optimized for timm use, but will work great with transformers and other libs. Updated the base image, Python 3.12, Pillow-SIMD before better CPU use with image preprocessing, and made a number of other tweaks. From the Jupyter launcher you can run the terminal and setup a timm environment in moments with setup_timm_dev or setup_timm_scripts helpers. Give it a try, timm/jupyterlab-timm
rwightman 
posted an update 12 months ago
view post
Post
1221
New timm 1.0.13 and OpenCLIP 2.30.0 releases to start the year. Both modest but worthwhile updates.

timm added a number of new model weights, supporting loading of:
* PaliGemma2 encoders (ported from google/paligemma-2-release-67500e1e1dbfdd4dee27ba48)
* AIMv-2 encoders (ported from apple/aimv2-6720fe1558d94c7805f7688c)

A few higher resolution 384x384 ConvNeXt-Nano ImageNet-12k pretrain & finetunes. See other changes here: https://github.com/huggingface/pytorch-image-models/releases/tag/v1.0.13

And support added in both OpenCLIP and timm for two CLIP models that were missed. The DFN L/14 is 🔥
* DFN CLIP L/14 w/ 39B samples seen - apple/DFN2B-CLIP-ViT-L-14-39B, timm/vit_large_patch14_clip_224.dfn2b_s39b
* MetaCLIP H/14 (altogether) - timm/vit_huge_patch14_clip_224.metaclip_altogether

And last, ~70-80 models that were relying on timm remapping from OpenCLIP got their own timm hub instances to allow use with the upcoming Transformers TimmWrapperModel
rwightman 
posted an update about 1 year ago
view post
Post
1494
There's a new timm release, v 1.0.12, with a focus on optimizers. The optimizer factory has been refactored, there's now a timm.optim.list_optimizers() and new way to register optimizers and their attributes. As always you can use an timm optimizer like a torch one, just replace torch.optim with timm.optim

New optimizers include:
* AdafactorBigVision - adfactorbv
* ADOPT - adopt / adoptw (decoupled decay)
* MARS - mars
* LaProp - laprop
* Cautious Optimizers - a modification to all of the above, prefix with c as well as cadamw, cnadamw, csgdw, clamb, crmsproptf

I shared some caution comparisons in this model repo: rwightman/timm-optim-caution

For details, references, see the code: https://github.com/huggingface/pytorch-image-models/tree/main/timm/optim

  • 3 replies
·
rwightman 
posted an update about 1 year ago
view post
Post
1409
I'm currently on a push to expand the scope of image based datasets on the Hub. There's certainly a lot already, but for anyone who's looked closely, there's not a whole lot of standardization. I am to fix that, datasets under the
timm
and
pixparse
orgs will serve as canonical examples for various task / modality combinations and be useable without fuss in libraries like timm, OpenCLIP, and hopefully more.

I just uploaded the first multi-label dataset that I'll support with timm scripts soon: timm/plant-pathology-2021

Next up object detection & segmentation! I've got an annotation spec sorted out, a lot of datasets ready to rip, and yeah that means timm support for object detection, eventually segmentation, is finally under development :O
rwightman 
posted an update about 1 year ago
view post
Post
1090
Want to validate some hparams or figure out what timm model to use before commiting to download or training with a large dataset? Try mini-imagenet: timm/mini-imagenet

I had this sitting on my drive and forgot where I pulled it together from. It's 100 classes of imagenet, 50k train and 10k val images (from ImageNet-1k train set), and 5k test images (from ImageNet-1k val set). 7.4GB instead of > 100GB for the full ImageNet-1k. This ver is not reduced resolution like some other 'mini' versions. Super easy to use with timm train/val scripts, checkout the dataset card.

I often check fine-tuning with even smaller datasets like:
* timm/resisc45
* timm/oxford-iiit-pet
But those are a bit small to train any modest size model w/o starting from pretrained weights.
rwightman 
posted an update about 1 year ago
view post
Post
1635
New MobileNetV4 weights were uploaded a few days ago -- more ImageNet-12k training at 384x384 for the speedy 'Conv Medium' models.

There are 3 weight variants here for those who like to tinker. On my hold-out eval they are ordered as below, not that different, but the Adopt 180 epochs closer to AdamW 250 than to AdamW 180.
* AdamW for 250 epochs - timm/mobilenetv4_conv_medium.e250_r384_in12k
* Adopt for 180 epochs - timm/mobilenetv4_conv_medium.e180_ad_r384_in12k
* AdamW for 180 epochs - timm/mobilenetv4_conv_medium.e180_r384_in12k

This was by request as a user reported impressive results using the 'Conv Large' ImagNet-12k pretrains as object detection backbones. ImageNet-1k fine-tunes are pending, the weights do behave differently with the 180 vs 250 epochs and the Adopt vs AdamW optimizer.

rwightman 
posted an update about 1 year ago
view post
Post
685
A new timm release (1.0.11) is out now. A also wrote an article on one of the included models: https://huggingface.co/blog/rwightman/mambaout

Featured in the release are:
* The MambaOut model, a cheeky arch inspired by SSM but without the SSM part, a ConvNeXt with gating.
* Several timm trained MambaOut variations with arch tweaks and ImageNet-12k pretrain to verify scaling, supplement ported weights.
* The smallest MobileNetV4, a 0.5x width scaled Conv-Small.
* Two impressive MobileNetV3 Large models outperforming all previous, using MNV4 Small recipe.
* 'Zepto,' a new compact ConvNeXt variant even smaller than the previous Atto, 2.2M params, RMSNorm, and solid results for its size.
* Newly ported SigLIP SO400M/16 ViT multi-lingual weights, the largest i18n weights, prevous was B/16.
* Two ImageNet-1k fine-tuned SigLIP SO400M models at 378x378
* InternViT 300M weight port. A really solid ViT encoder distilled from OpenGVLab 6B VL model encoder.
* An assortment of very small, sub 1M param pretrained test models to improve library unit tests and serve low-resource applications.
rwightman 
posted an update over 1 year ago
view post
Post
2648
A 'small' MobileNet-V4 update, I just pushed weights for the smallest model I've trained in the series, a 0.5 width multiplier version of the MobileNet-V4 Conv Small.

Now you may look at this and say hey, why is this impressive? 64.8% top-1 and 2.2M params? MobileNetV3-Small 0.75, and MobileNet-V2 0.5 are both fewer params (at ~2M) and over 65% top-1, what gives? Well this is where MobileNet-V4 differs from the previous versions of the model family, it trades off (gives up) a little parameter efficiency for some computational efficiency.

So, let's look at the speed. On a 4090 w/ torchcompile
* 98K img/sec - timm/mobilenetv4_conv_small_050.e3000_r224_in1k
* 58K img/sec - timm/mobilenetv3_small_075.lamb_in1k
* 37K img/sec - timm/mobilenetv2_050.lamb_in1k

And there you go, if you have a need for speed, MNV4 is the better option.
rwightman 
posted an update over 1 year ago
view post
Post
1321
The timm leaderboard timm/leaderboard has been updated with the ability to select different hardware benchmark sets: RTX4090, RTX3090, two different CPUs along with some NCHW / NHWC layout and torch.compile (dynamo) variations.

Also worth pointing out, there are three rather newish 'test' models that you'll see at the top of any samples/sec comparison:
* test_vit ( timm/test_vit.r160_in1k)
* test_efficientnet ( timm/test_efficientnet.r160_in1k)
* test_byobnet ( timm/test_byobnet.r160_in1k, a mix of resnet, darknet, effnet/regnet like blocks)

They are < 0.5M params, insanely fast and originally intended for unit testing w/ real weights. They have awful ImageNet top-1, it's rare to have anyone bother to train a model this small on ImageNet (the classifier is roughly 30-70% of the param count!). However, they are FAST on very limited hadware and you can fine-tune them well on small data. Could be the model you're looking for?
rwightman 
posted an update over 1 year ago
view post
Post
2105
The latest timm validation & test set results are now viewable by a leaderboard space: timm/leaderboard

As of yesterday, I updated all of the results for ImageNet , ImageNet-ReaL, ImageNet-V2, ImageNet-R, ImageNet-A, and Sketch sets. The csv files can be found in the GH repo https://github.com/huggingface/pytorch-image-models/tree/main/results

Unfortunately the latest benchmark csv files are not yet up to date, there are some gaps in dataset results vs throughput/flop numbers impact the plots.

h/t to @MohamedRashad for making the first timm leaderboard.
  • 1 reply
·
rwightman 
posted an update over 1 year ago
giux78 
posted an update over 1 year ago
view post
Post
1715
We https://mii-llm.ai just released a new LLM Italian benchmark and a set of evaluation: MMLU-PRO-ITA

Thanks to @efederici who released efederici/MMLU-Pro-ita a machine translated version of MMLU-PRO and thanks to a community shared computational effort we published in the "Eval Aggiuntive" tab of https://huggingface.co/spaces/FinancialSupport/open_ita_llm_leaderboard the results on Italian open source LLMs.

If you want to deepen read the blog article on hf https://huggingface.co/blog/giux78/mmlu-pro-ita