MTG Embedding models
Collection
10 items
•
Updated
This is a sentence-transformers model finetuned from TaylorAI/bge-micro-v2 on the mtg_cards-2025-04-04 dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("philipp-zettl/bge-micro-v2-mtg")
# Run inference
sentences = [
'141a031d-f899-497b-adf7-4af142078085_0367fac8-6990-4544-ac7d-ed363b55a9cf',
"Title: Quirion Explorer\nCost: {1}{G}\nColors: ['G']\nType: Creature — Elf Druid Scout\nDesc: {T}: Add one mana of any color that a land an opponent controls could produce.",
"Title: Savage Hunger\nCost: {2}{G}\nColors: ['G']\nType: Enchantment — Aura\nDesc: Enchant creature\nEnchanted creature gets +1/+0 and has trample.\nCycling {2} ({2}, Discard this card: Draw a card.)",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
sts-dev and sts-testEmbeddingSimilarityEvaluator| Metric | sts-dev | sts-test |
|---|---|---|
| pearson_cosine | 0.6089 | 0.6049 |
| spearman_cosine | 0.6631 | 0.6608 |
uuid, sentence_1, sentence_2, image_1, image_2, and score| uuid | sentence_1 | sentence_2 | image_1 | image_2 | score | |
|---|---|---|---|---|---|---|
| type | string | string | string | string | string | float |
| details |
|
|
|
|
|
|
| uuid | sentence_1 | sentence_2 | image_1 | image_2 | score |
|---|---|---|---|---|---|
08f9b863-10b7-46d6-badd-97381e6c7c5e_4330efa7-a11b-4776-9fb0-1cae8aed67b1 |
Title: Blast Zone |
Title: Tom van de Logt Bio (2000) |
https://cards.scryfall.io/normal/front/0/8/08f9b863-10b7-46d6-badd-97381e6c7c5e.jpg?1674423042 |
https://cards.scryfall.io/normal/front/4/3/4330efa7-a11b-4776-9fb0-1cae8aed67b1.jpg?1562767017 |
0.25 |
abe9cf1e-d398-41e0-8b11-afe1015e4fd9_40cb67f7-b4e1-423b-8f55-d44ed383e778 |
Title: Coral Net |
Title: Silumgar Butcher |
https://cards.scryfall.io/normal/front/a/b/abe9cf1e-d398-41e0-8b11-afe1015e4fd9.jpg?1562631469 |
https://cards.scryfall.io/normal/front/4/0/40cb67f7-b4e1-423b-8f55-d44ed383e778.jpg?1562785294 |
-1.0 |
3dd13408-b4db-42e7-bf3c-d46716538a7c_05a6dc90-3997-4911-8bd6-854c85eca35b |
Title: Rishadan Brigand |
Title: Banishing Stroke |
https://cards.scryfall.io/normal/front/3/d/3dd13408-b4db-42e7-bf3c-d46716538a7c.jpg?1632145390 |
https://cards.scryfall.io/normal/front/0/5/05a6dc90-3997-4911-8bd6-854c85eca35b.jpg?1723433851 |
-1.0 |
CosineSimilarityLoss with these parameters:{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
uuid, sentence_1, sentence_2, image_1, image_2, and score| uuid | sentence_1 | sentence_2 | image_1 | image_2 | score | |
|---|---|---|---|---|---|---|
| type | string | string | string | string | string | float |
| details |
|
|
|
|
|
|
| uuid | sentence_1 | sentence_2 | image_1 | image_2 | score |
|---|---|---|---|---|---|
6bdd8645-aee9-44cb-acaa-2674f55cdf2f_b34bb149-2e50-462e-8b83-5c8339bb3aff |
Title: Syr Cadian, Knight Owl |
Title: Non-Human Cannonball |
https://cards.scryfall.io/normal/front/6/b/6bdd8645-aee9-44cb-acaa-2674f55cdf2f.jpg?1664317187 |
https://cards.scryfall.io/normal/front/b/3/b34bb149-2e50-462e-8b83-5c8339bb3aff.jpg?1673917877 |
0.25 |
860f4304-38f1-4c2f-a122-2590619522fd_08d6db9b-b2da-4148-aa49-8c2fecac6e32 |
Title: Hindering Light |
Title: Gleam of Resistance |
https://cards.scryfall.io/normal/front/8/6/860f4304-38f1-4c2f-a122-2590619522fd.jpg?1712353583 |
https://cards.scryfall.io/normal/front/0/8/08d6db9b-b2da-4148-aa49-8c2fecac6e32.jpg?1573505575 |
0.25 |
91b448f4-aa0c-42c7-a771-e8dd20e0520c_46f810c2-310e-42f5-ab1f-d56396cf5124 |
Title: Practiced Tactics |
Title: Anointer Priest |
https://cards.scryfall.io/normal/front/9/1/91b448f4-aa0c-42c7-a771-e8dd20e0520c.jpg?1604192922 |
https://cards.scryfall.io/normal/front/4/6/46f810c2-310e-42f5-ab1f-d56396cf5124.jpg?1599769231 |
0.25 |
CosineSimilarityLoss with these parameters:{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64learning_rate: 2e-05num_train_epochs: 1warmup_ratio: 0.1log_level_replica: passivelog_on_each_node: Falselogging_nan_inf_filter: Falsepush_to_hub: Trueresume_from_checkpoint: ./models/bge-micro-v2-mtg/hub_model_id: philipp-zettl/bge-micro-v2-mtghub_always_push: Truebatch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: passivelog_on_each_node: Falselogging_nan_inf_filter: Falsesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Trueresume_from_checkpoint: ./models/bge-micro-v2-mtg/hub_model_id: philipp-zettl/bge-micro-v2-mtghub_strategy: every_savehub_private_repo: Nonehub_always_push: Truegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|---|---|---|---|---|---|
| -1 | -1 | - | - | 0.3031 | - |
| 0.0113 | 500 | 0.8624 | - | - | - |
| 0.0225 | 1000 | 0.3681 | - | - | - |
| 0.0338 | 1500 | 0.3505 | - | - | - |
| 0.0451 | 2000 | 0.3485 | - | - | - |
| 0.0563 | 2500 | 0.3467 | - | - | - |
| 0.0676 | 3000 | 0.3475 | - | - | - |
| 0.0789 | 3500 | 0.3469 | - | - | - |
| 0.0901 | 4000 | 0.3465 | - | - | - |
| 0.1014 | 4500 | 0.3477 | - | - | - |
| 0.1127 | 5000 | 0.3465 | 0.3498 | 0.6792 | - |
| 0.1240 | 5500 | 0.3491 | - | - | - |
| 0.1352 | 6000 | 0.3461 | - | - | - |
| 0.1465 | 6500 | 0.3454 | - | - | - |
| 0.1578 | 7000 | 0.3448 | - | - | - |
| 0.1690 | 7500 | 0.3432 | - | - | - |
| 0.1803 | 8000 | 0.3424 | - | - | - |
| 0.1916 | 8500 | 0.3442 | - | - | - |
| 0.2028 | 9000 | 0.3439 | - | - | - |
| 0.2141 | 9500 | 0.3465 | - | - | - |
| 0.2254 | 10000 | 0.3422 | 0.3447 | 0.6660 | - |
| 0.2366 | 10500 | 0.3422 | - | - | - |
| 0.2479 | 11000 | 0.3436 | - | - | - |
| 0.2592 | 11500 | 0.3453 | - | - | - |
| 0.2704 | 12000 | 0.3472 | - | - | - |
| 0.2817 | 12500 | 0.3459 | - | - | - |
| 0.2930 | 13000 | 0.3481 | - | - | - |
| 0.3043 | 13500 | 0.3438 | - | - | - |
| 0.3155 | 14000 | 0.3494 | - | - | - |
| 0.3268 | 14500 | 0.3444 | - | - | - |
| 0.3381 | 15000 | 0.3457 | 0.3438 | 0.6606 | - |
| 0.3493 | 15500 | 0.3438 | - | - | - |
| 0.3606 | 16000 | 0.3434 | - | - | - |
| 0.3719 | 16500 | 0.343 | - | - | - |
| 0.3831 | 17000 | 0.3441 | - | - | - |
| 0.3944 | 17500 | 0.345 | - | - | - |
| 0.4057 | 18000 | 0.3419 | - | - | - |
| 0.4169 | 18500 | 0.3415 | - | - | - |
| 0.4282 | 19000 | 0.3401 | - | - | - |
| 0.4395 | 19500 | 0.3407 | - | - | - |
| 0.4507 | 20000 | 0.3424 | 0.3397 | 0.6610 | - |
| 0.4620 | 20500 | 0.3402 | - | - | - |
| 0.4733 | 21000 | 0.3393 | - | - | - |
| 0.4846 | 21500 | 0.3439 | - | - | - |
| 0.4958 | 22000 | 0.3429 | - | - | - |
| 0.5071 | 22500 | 0.3428 | - | - | - |
| 0.5184 | 23000 | 0.3408 | - | - | - |
| 0.5296 | 23500 | 0.3402 | - | - | - |
| 0.5409 | 24000 | 0.3396 | - | - | - |
| 0.5522 | 24500 | 0.3405 | - | - | - |
| 0.5634 | 25000 | 0.3377 | 0.3365 | 0.6642 | - |
| 0.5747 | 25500 | 0.3378 | - | - | - |
| 0.5860 | 26000 | 0.341 | - | - | - |
| 0.5972 | 26500 | 0.3382 | - | - | - |
| 0.6085 | 27000 | 0.3399 | - | - | - |
| 0.6198 | 27500 | 0.3354 | - | - | - |
| 0.6310 | 28000 | 0.3407 | - | - | - |
| 0.6423 | 28500 | 0.3356 | - | - | - |
| 0.6536 | 29000 | 0.3375 | - | - | - |
| 0.6648 | 29500 | 0.3373 | - | - | - |
| 0.6761 | 30000 | 0.3348 | 0.3328 | 0.6661 | - |
| 0.6874 | 30500 | 0.3357 | - | - | - |
| 0.6987 | 31000 | 0.336 | - | - | - |
| 0.7099 | 31500 | 0.3378 | - | - | - |
| 0.7212 | 32000 | 0.3374 | - | - | - |
| 0.7325 | 32500 | 0.3389 | - | - | - |
| 0.7437 | 33000 | 0.3353 | - | - | - |
| 0.7550 | 33500 | 0.339 | - | - | - |
| 0.7663 | 34000 | 0.3334 | - | - | - |
| 0.7775 | 34500 | 0.3354 | - | - | - |
| 0.7888 | 35000 | 0.3348 | 0.3294 | 0.6604 | - |
| 0.8001 | 35500 | 0.3352 | - | - | - |
| 0.8113 | 36000 | 0.3325 | - | - | - |
| 0.8226 | 36500 | 0.3324 | - | - | - |
| 0.8339 | 37000 | 0.3345 | - | - | - |
| 0.8451 | 37500 | 0.3323 | - | - | - |
| 0.8564 | 38000 | 0.3321 | - | - | - |
| 0.8677 | 38500 | 0.3332 | - | - | - |
| 0.8790 | 39000 | 0.335 | - | - | - |
| 0.8902 | 39500 | 0.3341 | - | - | - |
| 0.9015 | 40000 | 0.3346 | 0.3273 | 0.6631 | - |
| 0.9128 | 40500 | 0.3352 | - | - | - |
| 0.9240 | 41000 | 0.336 | - | - | - |
| 0.9353 | 41500 | 0.3319 | - | - | - |
| 0.9466 | 42000 | 0.3323 | - | - | - |
| 0.9578 | 42500 | 0.3326 | - | - | - |
| 0.9691 | 43000 | 0.333 | - | - | - |
| 0.9804 | 43500 | 0.3316 | - | - | - |
| 0.9916 | 44000 | 0.3303 | - | - | - |
| -1 | -1 | - | - | - | 0.6608 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Base model
TaylorAI/bge-micro-v2