ResNet-Mixed-Convolution: Optimized for Qualcomm Devices

ResNet Mixed Convolutions is a network with a mixture of 2D and 3D convolutions used for video understanding.

This is based on the implementation of ResNet-Mixed-Convolution found here. This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the Qualcomm® AI Hub Models library to export with custom configurations. More details on model performance across various devices, can be found here.

Qualcomm AI Hub Models uses Qualcomm AI Hub Workbench to compile, profile, and evaluate this model. Sign up to run these models on a hosted Qualcomm® device.

Getting Started

There are two ways to deploy this model on your device:

Option 1: Download Pre-Exported Models

Below are pre-exported model assets ready for deployment.

Runtime Precision Chipset SDK Versions Download
ONNX float Universal QAIRT 2.37, ONNX Runtime 1.23.0 Download
ONNX w8a16 Universal QAIRT 2.37, ONNX Runtime 1.23.0 Download
QNN_DLC float Universal QAIRT 2.42 Download
QNN_DLC w8a16 Universal QAIRT 2.42 Download
TFLITE float Universal QAIRT 2.42, TFLite 2.17.0 Download

For more device-specific assets and performance metrics, visit ResNet-Mixed-Convolution on Qualcomm® AI Hub.

Option 2: Export with Custom Configurations

Use the Qualcomm® AI Hub Models Python library to compile and export the model with your own:

  • Custom weights (e.g., fine-tuned checkpoints)
  • Custom input shapes
  • Target device and runtime configurations

This option is ideal if you need to customize the model beyond the default configuration provided here.

See our repository for ResNet-Mixed-Convolution on GitHub for usage instructions.

Model Details

Model Type: Model_use_case.video_classification

Model Stats:

  • Model checkpoint: Kinetics-400
  • Input resolution: 112x112
  • Number of parameters: 11.7M
  • Model size (float): 44.6 MB
  • Model size (w8a16): 11.5 MB

Performance Summary

Model Runtime Precision Chipset Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit
ResNet-Mixed-Convolution ONNX float Snapdragon® X Elite 14.062 ms 22 - 22 MB NPU
ResNet-Mixed-Convolution ONNX float Snapdragon® 8 Gen 3 Mobile 9.988 ms 2 - 235 MB NPU
ResNet-Mixed-Convolution ONNX float Qualcomm® QCS8550 (Proxy) 13.721 ms 0 - 38 MB NPU
ResNet-Mixed-Convolution ONNX float Qualcomm® QCS9075 27.604 ms 2 - 5 MB NPU
ResNet-Mixed-Convolution ONNX float Snapdragon® 8 Elite For Galaxy Mobile 8.173 ms 0 - 167 MB NPU
ResNet-Mixed-Convolution ONNX float Snapdragon® 8 Elite Gen 5 Mobile 5.86 ms 2 - 167 MB NPU
ResNet-Mixed-Convolution ONNX w8a16 Snapdragon® X Elite 9.123 ms 12 - 12 MB NPU
ResNet-Mixed-Convolution ONNX w8a16 Snapdragon® 8 Gen 3 Mobile 6.522 ms 1 - 195 MB NPU
ResNet-Mixed-Convolution ONNX w8a16 Qualcomm® QCS6490 1728.182 ms 45 - 62 MB CPU
ResNet-Mixed-Convolution ONNX w8a16 Qualcomm® QCS8550 (Proxy) 8.78 ms 0 - 232 MB NPU
ResNet-Mixed-Convolution ONNX w8a16 Qualcomm® QCS9075 9.303 ms 1 - 4 MB NPU
ResNet-Mixed-Convolution ONNX w8a16 Qualcomm® QCM6690 890.317 ms 106 - 113 MB CPU
ResNet-Mixed-Convolution ONNX w8a16 Snapdragon® 8 Elite For Galaxy Mobile 5.341 ms 1 - 135 MB NPU
ResNet-Mixed-Convolution ONNX w8a16 Snapdragon® 7 Gen 4 Mobile 881.492 ms 105 - 112 MB CPU
ResNet-Mixed-Convolution ONNX w8a16 Snapdragon® 8 Elite Gen 5 Mobile 3.904 ms 0 - 138 MB NPU
ResNet-Mixed-Convolution QNN_DLC float Snapdragon® X Elite 14.152 ms 2 - 2 MB NPU
ResNet-Mixed-Convolution QNN_DLC float Snapdragon® 8 Gen 3 Mobile 9.536 ms 0 - 282 MB NPU
ResNet-Mixed-Convolution QNN_DLC float Qualcomm® QCS8550 (Proxy) 13.367 ms 2 - 5 MB NPU
ResNet-Mixed-Convolution QNN_DLC float Qualcomm® SA8775P 25.055 ms 1 - 223 MB NPU
ResNet-Mixed-Convolution QNN_DLC float Qualcomm® QCS9075 27.978 ms 2 - 6 MB NPU
ResNet-Mixed-Convolution QNN_DLC float Qualcomm® QCS8450 (Proxy) 27.577 ms 0 - 240 MB NPU
ResNet-Mixed-Convolution QNN_DLC float Qualcomm® SA8295P 26.689 ms 0 - 192 MB NPU
ResNet-Mixed-Convolution QNN_DLC float Snapdragon® 8 Elite For Galaxy Mobile 7.684 ms 2 - 227 MB NPU
ResNet-Mixed-Convolution QNN_DLC float Snapdragon® 8 Elite Gen 5 Mobile 5.76 ms 2 - 233 MB NPU
ResNet-Mixed-Convolution QNN_DLC w8a16 Snapdragon® X Elite 9.877 ms 1 - 1 MB NPU
ResNet-Mixed-Convolution QNN_DLC w8a16 Snapdragon® 8 Gen 3 Mobile 6.654 ms 1 - 255 MB NPU
ResNet-Mixed-Convolution QNN_DLC w8a16 Qualcomm® QCS6490 37.276 ms 1 - 4 MB NPU
ResNet-Mixed-Convolution QNN_DLC w8a16 Qualcomm® QCS8550 (Proxy) 9.22 ms 1 - 3 MB NPU
ResNet-Mixed-Convolution QNN_DLC w8a16 Qualcomm® SA8775P 9.288 ms 1 - 191 MB NPU
ResNet-Mixed-Convolution QNN_DLC w8a16 Qualcomm® QCS9075 10.377 ms 1 - 4 MB NPU
ResNet-Mixed-Convolution QNN_DLC w8a16 Qualcomm® QCM6690 178.522 ms 1 - 208 MB NPU
ResNet-Mixed-Convolution QNN_DLC w8a16 Qualcomm® QCS8450 (Proxy) 12.996 ms 1 - 255 MB NPU
ResNet-Mixed-Convolution QNN_DLC w8a16 Qualcomm® SA8295P 16.239 ms 1 - 192 MB NPU
ResNet-Mixed-Convolution QNN_DLC w8a16 Snapdragon® 8 Elite For Galaxy Mobile 5.261 ms 1 - 186 MB NPU
ResNet-Mixed-Convolution QNN_DLC w8a16 Snapdragon® 7 Gen 4 Mobile 15.94 ms 1 - 197 MB NPU
ResNet-Mixed-Convolution QNN_DLC w8a16 Snapdragon® 8 Elite Gen 5 Mobile 3.995 ms 1 - 190 MB NPU
ResNet-Mixed-Convolution TFLITE float Snapdragon® 8 Gen 3 Mobile 218.735 ms 0 - 313 MB NPU
ResNet-Mixed-Convolution TFLITE float Qualcomm® QCS8275 (Proxy) 585.16 ms 0 - 252 MB NPU
ResNet-Mixed-Convolution TFLITE float Qualcomm® QCS8550 (Proxy) 313.312 ms 0 - 2 MB NPU
ResNet-Mixed-Convolution TFLITE float Qualcomm® SA8775P 296.864 ms 0 - 252 MB NPU
ResNet-Mixed-Convolution TFLITE float Qualcomm® QCS9075 321.486 ms 0 - 28 MB NPU
ResNet-Mixed-Convolution TFLITE float Qualcomm® QCS8450 (Proxy) 345.498 ms 0 - 277 MB NPU
ResNet-Mixed-Convolution TFLITE float Qualcomm® SA7255P 585.16 ms 0 - 252 MB NPU
ResNet-Mixed-Convolution TFLITE float Qualcomm® SA8295P 353.223 ms 0 - 234 MB NPU
ResNet-Mixed-Convolution TFLITE float Snapdragon® 8 Elite For Galaxy Mobile 203.459 ms 0 - 257 MB NPU
ResNet-Mixed-Convolution TFLITE float Snapdragon® 8 Elite Gen 5 Mobile 189.334 ms 0 - 254 MB NPU

License

  • The license for the original implementation of ResNet-Mixed-Convolution can be found here.

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Paper for qualcomm/ResNet-Mixed-Convolution