File size: 9,820 Bytes
9b3d9a0 95bbd6d 4bcc686 78f9096 4bcc686 6524787 78f9096 ef144b9 4bcc686 78f9096 6524787 ef144b9 78f9096 ef144b9 78f9096 4bcc686 e521f8a 6524787 7a5eb22 e521f8a 960fabc 7a5eb22 e521f8a 95bbd6d ef144b9 4bcc686 ef144b9 95bbd6d 36baf26 95bbd6d 7a5eb22 71845c1 7a5eb22 4bcc686 7a5eb22 95bbd6d 4bcc686 95bbd6d 4bcc686 95bbd6d 4bcc686 7a5eb22 36baf26 95bbd6d 36baf26 7a5eb22 95bbd6d 4bcc686 95bbd6d 7a5eb22 95bbd6d 95cc7e5 4bcc686 e521f8a 4bcc686 e521f8a 4bcc686 e521f8a 4bcc686 7a5eb22 4bcc686 95bbd6d 4bcc686 e521f8a 95bbd6d ef144b9 4bcc686 ef144b9 4bcc686 ef144b9 bde4e5c ef144b9 2b1b1b6 ef144b9 4bcc686 2b1b1b6 4bcc686 2b1b1b6 4bcc686 bde4e5c 4bcc686 ef144b9 4bcc686 ef144b9 36baf26 ef144b9 36baf26 ef144b9 4bcc686 36baf26 4bcc686 ef144b9 36baf26 ef144b9 36baf26 4bcc686 36baf26 4bcc686 2b1b1b6 ef144b9 36baf26 ef144b9 2b1b1b6 ef144b9 2b1b1b6 ef144b9 4bcc686 ef144b9 4bcc686 ef144b9 4bcc686 ef144b9 4bcc686 ef144b9 95bbd6d ef144b9 95bbd6d 7a5eb22 95bbd6d 36baf26 ef144b9 95bbd6d 7a5eb22 95bbd6d 4bcc686 2b1b1b6 95bbd6d 7a5eb22 95bbd6d 7a5eb22 95bbd6d 36baf26 95bbd6d 95cc7e5 95bbd6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import os
import sys
import traceback
from pathlib import Path
from typing import List, Tuple, Any
import duckdb
import pandas as pd
import numpy as np
import matplotlib
matplotlib.use("Agg") # headless for Spaces
import matplotlib.pyplot as plt
import gradio as gr
# =========================
# Basic configuration
# =========================
APP_TITLE = "ALCO Liquidity & Interest-Rate Risk Dashboard"
TABLE_FQN = "my_db.main.masterdataset_v" # source table
VIEW_FQN = "my_db.main.positions_v" # normalized view created by this app
PRODUCT_ASSETS = [
"loan", "overdraft", "advances", "bills", "bill",
"tbond", "t-bond", "tbill", "t-bill", "repo_asset", "assets"
]
PRODUCT_SOF = [
"fd", "term_deposit", "td", "savings", "current",
"call", "repo_liab"
]
# =========================
# Helpers
# =========================
def connect_md() -> duckdb.DuckDBPyConnection:
token = os.environ.get("MOTHERDUCK_TOKEN", "")
if not token:
raise RuntimeError("MOTHERDUCK_TOKEN is not set. Add it in Space β Settings β Secrets.")
return duckdb.connect(f"md:?motherduck_token={token}")
def discover_columns(conn: duckdb.DuckDBPyConnection, table_fqn: str) -> List[str]:
# Try DESCRIBE first (fast), fall back to information_schema
try:
df = conn.execute(f"DESCRIBE {table_fqn};").fetchdf()
name_col = "column_name" if "column_name" in df.columns else df.columns[0]
return [str(c).lower() for c in df[name_col].tolist()]
except Exception:
df = conn.execute(
f"""
SELECT lower(column_name) AS col
FROM information_schema.columns
WHERE table_catalog = split_part('{table_fqn}', '.', 1)
AND table_schema = split_part('{table_fqn}', '.', 2)
AND table_name = split_part('{table_fqn}', '.', 3)
"""
).fetchdf()
return df["col"].tolist()
def build_view_sql(existing_cols: List[str]) -> str:
wanted = [
"as_of_date", "product", "months", "segments",
"currency", "Portfolio_value", "Interest_rate",
"days_to_maturity"
]
sel = []
for c in wanted:
if c.lower() in existing_cols:
sel.append(c)
else:
if c in ("Portfolio_value", "Interest_rate", "days_to_maturity", "months"):
sel.append(f"CAST(NULL AS DOUBLE) AS {c}")
else:
sel.append(f"CAST(NULL AS VARCHAR) AS {c}")
sof_list = ", ".join([f"'{p}'" for p in PRODUCT_SOF])
asset_list = ", ".join([f"'{p}'" for p in PRODUCT_ASSETS])
bucket_case = (
f"CASE "
f"WHEN lower(product) IN ({sof_list}) THEN 'SoF' "
f"WHEN lower(product) IN ({asset_list}) THEN 'Assets' "
f"ELSE 'Unknown' END AS bucket"
)
select_sql = ",\n ".join(sel + [bucket_case])
return f"""
CREATE OR REPLACE VIEW {VIEW_FQN} AS
SELECT
{select_sql}
FROM {TABLE_FQN};
"""
def ensure_view(conn: duckdb.DuckDBPyConnection, cols: List[str]) -> None:
required = {"product", "portfolio_value", "days_to_maturity"}
if not required.issubset(set(cols)):
raise RuntimeError(
f"Source table {TABLE_FQN} must contain columns {sorted(required)}; found {sorted(cols)}"
)
conn.execute(build_view_sql(cols))
def safe_num(x) -> float:
try:
return float(0.0 if x is None or (isinstance(x, float) and np.isnan(x)) else x)
except Exception:
return 0.0
def zeros_like_index(index) -> pd.Series:
return pd.Series([0] * len(index), index=index)
def plot_ladder(df: pd.DataFrame):
try:
if df is None or df.empty:
fig, ax = plt.subplots(figsize=(7, 3))
ax.text(0.5, 0.5, "No data", ha="center", va="center")
ax.axis("off")
return fig
pivot = df.pivot(index="time_bucket", columns="bucket", values="amount").fillna(0)
order = ["T+1", "T+2..7", "T+8..30", "T+31+"]
pivot = pivot.reindex(order)
# Convert to millions for plotting
pivot = pivot / 1_000_000
fig, ax = plt.subplots(figsize=(7, 4))
assets = pivot["Assets"] if "Assets" in pivot.columns else zeros_like_index(pivot.index)
sof = pivot["SoF"] if "SoF" in pivot.columns else zeros_like_index(pivot.index)
ax.bar(pivot.index, assets, label="Assets")
ax.bar(pivot.index, -sof, label="SoF")
ax.axhline(0, color="gray", lw=1)
ax.set_ylabel("LKR (Mn)")
ax.set_title("Maturity Ladder (Assets vs SoF)")
ax.legend()
fig.tight_layout()
return fig
except Exception as e:
fig, ax = plt.subplots(figsize=(7, 3))
ax.text(0.01, 0.8, "Chart Error:", fontsize=12, ha="left")
ax.text(0.01, 0.5, str(e), fontsize=10, ha="left", wrap=True)
ax.axis("off")
return fig
# =========================
# Query fragments
# =========================
KPI_SQL = f"""
SELECT
COALESCE(SUM(CASE WHEN bucket='Assets' AND days_to_maturity<=1 THEN Portfolio_value END),0) AS assets_t1,
COALESCE(SUM(CASE WHEN bucket='SoF' AND days_to_maturity<=1 THEN Portfolio_value END),0) AS sof_t1,
COALESCE(SUM(CASE WHEN bucket='Assets' AND days_to_maturity<=1 THEN Portfolio_value END),0)
- COALESCE(SUM(CASE WHEN bucket='SoF' AND days_to_maturity<=1 THEN Portfolio_value END),0) AS net_gap_t1
FROM {VIEW_FQN};
"""
LADDER_SQL = f"""
SELECT
CASE
WHEN days_to_maturity <= 1 THEN 'T+1'
WHEN days_to_maturity BETWEEN 2 AND 7 THEN 'T+2..7'
WHEN days_to_maturity BETWEEN 8 AND 30 THEN 'T+8..30'
ELSE 'T+31+'
END AS time_bucket,
bucket,
SUM(Portfolio_value) / 1000000.0 AS "Amount (LKR Mn)"
FROM {VIEW_FQN}
GROUP BY 1,2
ORDER BY 1,2;
"""
def irr_sql(cols: List[str]) -> str:
has_months = "months" in cols
has_ir = "interest_rate" in cols
t_expr = "CASE WHEN days_to_maturity IS NOT NULL THEN days_to_maturity/365.0"
if has_months:
t_expr += " WHEN months IS NOT NULL THEN months/12.0"
t_expr += " ELSE NULL END"
y_expr = "(Interest_rate/100.0)" if has_ir else "0.0"
return f"""
SELECT
bucket,
SUM(Portfolio_value) / 1000000.0 AS "Portfolio Value (LKR Mn)"
FROM {VIEW_FQN}
GROUP BY bucket
"""
# =========================
# Dashboard callback
# =========================
def run_dashboard() -> Tuple[str, str, str, str, str, Any, pd.DataFrame, pd.DataFrame]:
"""
Returns:
status, as_of, assets_t1, sof_t1, net_gap_t1, figure, ladder_df, irr_df
(text KPIs to avoid component type errors)
"""
try:
conn = connect_md()
# 1) Discover columns & build view
cols = discover_columns(conn, TABLE_FQN)
ensure_view(conn, cols)
# 2) As-of (optional)
as_of = "N/A"
if "as_of_date" in cols:
tmp = conn.execute(f"SELECT max(as_of_date) AS d FROM {VIEW_FQN}").fetchdf()
if not tmp.empty and not pd.isna(tmp["d"].iloc[0]):
as_of = str(tmp["d"].iloc[0])[:10]
# 3) KPIs
kpi = conn.execute(KPI_SQL).fetchdf()
assets_t1 = safe_num(kpi["assets_t1"].iloc[0]) if not kpi.empty else 0.0
sof_t1 = safe_num(kpi["sof_t1"].iloc[0]) if not kpi.empty else 0.0
net_gap = safe_num(kpi["net_gap_t1"].iloc[0]) if not kpi.empty else 0.0
# 4) Ladder & IRR
ladder = conn.execute(LADDER_SQL).fetchdf()
irr = conn.execute(irr_sql(cols)).fetchdf()
if "Portfolio Value (LKR Mn)" in irr.columns:
irr["Portfolio Value (LKR Mn)"] = irr["Portfolio Value (LKR Mn)"].map('{:,.2f}'.format)
# 5) Chart
fig = plot_ladder(ladder)
assets_t1_mn_str = f"{(assets_t1 / 1_000_000):,.2f}"
sof_t1_mn_str = f"{(sof_t1 / 1_000_000):,.2f}"
net_gap_mn_str = f"{(net_gap / 1_000_000):,.2f}"
a1_text = f"The amount of Assets maturing tomorrow (T+1) is **LKR {assets_t1_mn_str} Mn**."
a2_text = f"The amount of Sources of Funds (SoF) maturing tomorrow (T+1) is **LKR {sof_t1_mn_str} Mn**."
a3_text = f"The resulting Net Liquidity Gap for tomorrow (T+1) is **LKR {net_gap_mn_str} Mn**."
status = f"Connected to Database (as of {pd.Timestamp.now().strftime('%Y-%m-%d %H:%M:%S')})"
return (
status,
as_of,
a1_text,
a2_text,
a3_text,
fig,
ladder,
irr,
)
except Exception as e:
tb = traceback.format_exc()
empty_df = pd.DataFrame()
fig = plot_ladder(empty_df)
return (
f"β Error: {e}\n\n{tb}",
"N/A",
"0",
"0",
"0",
fig,
empty_df,
empty_df,
)
# =========================
# Build Gradio UI
# =========================
with gr.Blocks(title=APP_TITLE) as demo:
gr.Markdown(f"# {APP_TITLE}\n_Source:_ `{TABLE_FQN}` β `{VIEW_FQN}`")
status = gr.Textbox(label="Status", interactive=False, lines=8)
with gr.Row():
refresh_btn = gr.Button("π Refresh", variant="primary")
with gr.Row():
as_of = gr.Textbox(label="As of date", interactive=False)
a1 = gr.Markdown("The amount of Assets maturing tomorrow (T+1) is...")
a2 = gr.Markdown("The amount of Sources of Funds (SoF) maturing tomorrow (T+1) is...")
a3 = gr.Markdown("The resulting Net Liquidity Gap for tomorrow (T+1) is...")
chart = gr.Plot(label="Maturity Ladder")
ladder_df = gr.Dataframe(label="Ladder Detail")
irr_df = gr.Dataframe(label="Interest-Rate Risk (approx)")
refresh_btn.click(
fn=run_dashboard,
outputs=[status, as_of, a1, a2, a3, chart, ladder_df, irr_df],
)
if __name__ == "__main__":
demo.launch()
|