ALM_LLM / app.py
AshenH's picture
Update app.py
2b1b1b6 verified
raw
history blame
9.82 kB
import os
import sys
import traceback
from pathlib import Path
from typing import List, Tuple, Any
import duckdb
import pandas as pd
import numpy as np
import matplotlib
matplotlib.use("Agg") # headless for Spaces
import matplotlib.pyplot as plt
import gradio as gr
# =========================
# Basic configuration
# =========================
APP_TITLE = "ALCO Liquidity & Interest-Rate Risk Dashboard"
TABLE_FQN = "my_db.main.masterdataset_v" # source table
VIEW_FQN = "my_db.main.positions_v" # normalized view created by this app
PRODUCT_ASSETS = [
"loan", "overdraft", "advances", "bills", "bill",
"tbond", "t-bond", "tbill", "t-bill", "repo_asset", "assets"
]
PRODUCT_SOF = [
"fd", "term_deposit", "td", "savings", "current",
"call", "repo_liab"
]
# =========================
# Helpers
# =========================
def connect_md() -> duckdb.DuckDBPyConnection:
token = os.environ.get("MOTHERDUCK_TOKEN", "")
if not token:
raise RuntimeError("MOTHERDUCK_TOKEN is not set. Add it in Space β†’ Settings β†’ Secrets.")
return duckdb.connect(f"md:?motherduck_token={token}")
def discover_columns(conn: duckdb.DuckDBPyConnection, table_fqn: str) -> List[str]:
# Try DESCRIBE first (fast), fall back to information_schema
try:
df = conn.execute(f"DESCRIBE {table_fqn};").fetchdf()
name_col = "column_name" if "column_name" in df.columns else df.columns[0]
return [str(c).lower() for c in df[name_col].tolist()]
except Exception:
df = conn.execute(
f"""
SELECT lower(column_name) AS col
FROM information_schema.columns
WHERE table_catalog = split_part('{table_fqn}', '.', 1)
AND table_schema = split_part('{table_fqn}', '.', 2)
AND table_name = split_part('{table_fqn}', '.', 3)
"""
).fetchdf()
return df["col"].tolist()
def build_view_sql(existing_cols: List[str]) -> str:
wanted = [
"as_of_date", "product", "months", "segments",
"currency", "Portfolio_value", "Interest_rate",
"days_to_maturity"
]
sel = []
for c in wanted:
if c.lower() in existing_cols:
sel.append(c)
else:
if c in ("Portfolio_value", "Interest_rate", "days_to_maturity", "months"):
sel.append(f"CAST(NULL AS DOUBLE) AS {c}")
else:
sel.append(f"CAST(NULL AS VARCHAR) AS {c}")
sof_list = ", ".join([f"'{p}'" for p in PRODUCT_SOF])
asset_list = ", ".join([f"'{p}'" for p in PRODUCT_ASSETS])
bucket_case = (
f"CASE "
f"WHEN lower(product) IN ({sof_list}) THEN 'SoF' "
f"WHEN lower(product) IN ({asset_list}) THEN 'Assets' "
f"ELSE 'Unknown' END AS bucket"
)
select_sql = ",\n ".join(sel + [bucket_case])
return f"""
CREATE OR REPLACE VIEW {VIEW_FQN} AS
SELECT
{select_sql}
FROM {TABLE_FQN};
"""
def ensure_view(conn: duckdb.DuckDBPyConnection, cols: List[str]) -> None:
required = {"product", "portfolio_value", "days_to_maturity"}
if not required.issubset(set(cols)):
raise RuntimeError(
f"Source table {TABLE_FQN} must contain columns {sorted(required)}; found {sorted(cols)}"
)
conn.execute(build_view_sql(cols))
def safe_num(x) -> float:
try:
return float(0.0 if x is None or (isinstance(x, float) and np.isnan(x)) else x)
except Exception:
return 0.0
def zeros_like_index(index) -> pd.Series:
return pd.Series([0] * len(index), index=index)
def plot_ladder(df: pd.DataFrame):
try:
if df is None or df.empty:
fig, ax = plt.subplots(figsize=(7, 3))
ax.text(0.5, 0.5, "No data", ha="center", va="center")
ax.axis("off")
return fig
pivot = df.pivot(index="time_bucket", columns="bucket", values="amount").fillna(0)
order = ["T+1", "T+2..7", "T+8..30", "T+31+"]
pivot = pivot.reindex(order)
# Convert to millions for plotting
pivot = pivot / 1_000_000
fig, ax = plt.subplots(figsize=(7, 4))
assets = pivot["Assets"] if "Assets" in pivot.columns else zeros_like_index(pivot.index)
sof = pivot["SoF"] if "SoF" in pivot.columns else zeros_like_index(pivot.index)
ax.bar(pivot.index, assets, label="Assets")
ax.bar(pivot.index, -sof, label="SoF")
ax.axhline(0, color="gray", lw=1)
ax.set_ylabel("LKR (Mn)")
ax.set_title("Maturity Ladder (Assets vs SoF)")
ax.legend()
fig.tight_layout()
return fig
except Exception as e:
fig, ax = plt.subplots(figsize=(7, 3))
ax.text(0.01, 0.8, "Chart Error:", fontsize=12, ha="left")
ax.text(0.01, 0.5, str(e), fontsize=10, ha="left", wrap=True)
ax.axis("off")
return fig
# =========================
# Query fragments
# =========================
KPI_SQL = f"""
SELECT
COALESCE(SUM(CASE WHEN bucket='Assets' AND days_to_maturity<=1 THEN Portfolio_value END),0) AS assets_t1,
COALESCE(SUM(CASE WHEN bucket='SoF' AND days_to_maturity<=1 THEN Portfolio_value END),0) AS sof_t1,
COALESCE(SUM(CASE WHEN bucket='Assets' AND days_to_maturity<=1 THEN Portfolio_value END),0)
- COALESCE(SUM(CASE WHEN bucket='SoF' AND days_to_maturity<=1 THEN Portfolio_value END),0) AS net_gap_t1
FROM {VIEW_FQN};
"""
LADDER_SQL = f"""
SELECT
CASE
WHEN days_to_maturity <= 1 THEN 'T+1'
WHEN days_to_maturity BETWEEN 2 AND 7 THEN 'T+2..7'
WHEN days_to_maturity BETWEEN 8 AND 30 THEN 'T+8..30'
ELSE 'T+31+'
END AS time_bucket,
bucket,
SUM(Portfolio_value) / 1000000.0 AS "Amount (LKR Mn)"
FROM {VIEW_FQN}
GROUP BY 1,2
ORDER BY 1,2;
"""
def irr_sql(cols: List[str]) -> str:
has_months = "months" in cols
has_ir = "interest_rate" in cols
t_expr = "CASE WHEN days_to_maturity IS NOT NULL THEN days_to_maturity/365.0"
if has_months:
t_expr += " WHEN months IS NOT NULL THEN months/12.0"
t_expr += " ELSE NULL END"
y_expr = "(Interest_rate/100.0)" if has_ir else "0.0"
return f"""
SELECT
bucket,
SUM(Portfolio_value) / 1000000.0 AS "Portfolio Value (LKR Mn)"
FROM {VIEW_FQN}
GROUP BY bucket
"""
# =========================
# Dashboard callback
# =========================
def run_dashboard() -> Tuple[str, str, str, str, str, Any, pd.DataFrame, pd.DataFrame]:
"""
Returns:
status, as_of, assets_t1, sof_t1, net_gap_t1, figure, ladder_df, irr_df
(text KPIs to avoid component type errors)
"""
try:
conn = connect_md()
# 1) Discover columns & build view
cols = discover_columns(conn, TABLE_FQN)
ensure_view(conn, cols)
# 2) As-of (optional)
as_of = "N/A"
if "as_of_date" in cols:
tmp = conn.execute(f"SELECT max(as_of_date) AS d FROM {VIEW_FQN}").fetchdf()
if not tmp.empty and not pd.isna(tmp["d"].iloc[0]):
as_of = str(tmp["d"].iloc[0])[:10]
# 3) KPIs
kpi = conn.execute(KPI_SQL).fetchdf()
assets_t1 = safe_num(kpi["assets_t1"].iloc[0]) if not kpi.empty else 0.0
sof_t1 = safe_num(kpi["sof_t1"].iloc[0]) if not kpi.empty else 0.0
net_gap = safe_num(kpi["net_gap_t1"].iloc[0]) if not kpi.empty else 0.0
# 4) Ladder & IRR
ladder = conn.execute(LADDER_SQL).fetchdf()
irr = conn.execute(irr_sql(cols)).fetchdf()
if "Portfolio Value (LKR Mn)" in irr.columns:
irr["Portfolio Value (LKR Mn)"] = irr["Portfolio Value (LKR Mn)"].map('{:,.2f}'.format)
# 5) Chart
fig = plot_ladder(ladder)
assets_t1_mn_str = f"{(assets_t1 / 1_000_000):,.2f}"
sof_t1_mn_str = f"{(sof_t1 / 1_000_000):,.2f}"
net_gap_mn_str = f"{(net_gap / 1_000_000):,.2f}"
a1_text = f"The amount of Assets maturing tomorrow (T+1) is **LKR {assets_t1_mn_str} Mn**."
a2_text = f"The amount of Sources of Funds (SoF) maturing tomorrow (T+1) is **LKR {sof_t1_mn_str} Mn**."
a3_text = f"The resulting Net Liquidity Gap for tomorrow (T+1) is **LKR {net_gap_mn_str} Mn**."
status = f"Connected to Database (as of {pd.Timestamp.now().strftime('%Y-%m-%d %H:%M:%S')})"
return (
status,
as_of,
a1_text,
a2_text,
a3_text,
fig,
ladder,
irr,
)
except Exception as e:
tb = traceback.format_exc()
empty_df = pd.DataFrame()
fig = plot_ladder(empty_df)
return (
f"❌ Error: {e}\n\n{tb}",
"N/A",
"0",
"0",
"0",
fig,
empty_df,
empty_df,
)
# =========================
# Build Gradio UI
# =========================
with gr.Blocks(title=APP_TITLE) as demo:
gr.Markdown(f"# {APP_TITLE}\n_Source:_ `{TABLE_FQN}` β†’ `{VIEW_FQN}`")
status = gr.Textbox(label="Status", interactive=False, lines=8)
with gr.Row():
refresh_btn = gr.Button("πŸ”„ Refresh", variant="primary")
with gr.Row():
as_of = gr.Textbox(label="As of date", interactive=False)
a1 = gr.Markdown("The amount of Assets maturing tomorrow (T+1) is...")
a2 = gr.Markdown("The amount of Sources of Funds (SoF) maturing tomorrow (T+1) is...")
a3 = gr.Markdown("The resulting Net Liquidity Gap for tomorrow (T+1) is...")
chart = gr.Plot(label="Maturity Ladder")
ladder_df = gr.Dataframe(label="Ladder Detail")
irr_df = gr.Dataframe(label="Interest-Rate Risk (approx)")
refresh_btn.click(
fn=run_dashboard,
outputs=[status, as_of, a1, a2, a3, chart, ladder_df, irr_df],
)
if __name__ == "__main__":
demo.launch()