Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from .wan_video_dit import WanModel | |
| class LoRAFromCivitai: | |
| def __init__(self): | |
| self.supported_model_classes = [] | |
| self.lora_prefix = [] | |
| self.renamed_lora_prefix = {} | |
| self.special_keys = {} | |
| def convert_state_dict(self, state_dict, lora_prefix="lora_unet_", alpha=1.0): | |
| for key in state_dict: | |
| if ".lora_up" in key: | |
| return self.convert_state_dict_up_down(state_dict, lora_prefix, alpha) | |
| return self.convert_state_dict_AB(state_dict, lora_prefix, alpha) | |
| def convert_state_dict_up_down(self, state_dict, lora_prefix="lora_unet_", alpha=1.0): | |
| renamed_lora_prefix = self.renamed_lora_prefix.get(lora_prefix, "") | |
| state_dict_ = {} | |
| for key in state_dict: | |
| if ".lora_up" not in key: | |
| continue | |
| if not key.startswith(lora_prefix): | |
| continue | |
| weight_up = state_dict[key].to(device="cuda", dtype=torch.float16) | |
| weight_down = state_dict[key.replace(".lora_up", ".lora_down")].to(device="cuda", dtype=torch.float16) | |
| if len(weight_up.shape) == 4: | |
| weight_up = weight_up.squeeze(3).squeeze(2).to(torch.float32) | |
| weight_down = weight_down.squeeze(3).squeeze(2).to(torch.float32) | |
| lora_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3) | |
| else: | |
| lora_weight = alpha * torch.mm(weight_up, weight_down) | |
| target_name = key.split(".")[0].replace(lora_prefix, renamed_lora_prefix).replace("_", ".") + ".weight" | |
| for special_key in self.special_keys: | |
| target_name = target_name.replace(special_key, self.special_keys[special_key]) | |
| state_dict_[target_name] = lora_weight.cpu() | |
| return state_dict_ | |
| def convert_state_dict_AB(self, state_dict, lora_prefix="", alpha=1.0, device="cuda", torch_dtype=torch.float16): | |
| state_dict_ = {} | |
| for key in state_dict: | |
| if ".lora_B." not in key: | |
| continue | |
| if not key.startswith(lora_prefix): | |
| continue | |
| weight_up = state_dict[key].to(device=device, dtype=torch_dtype) | |
| weight_down = state_dict[key.replace(".lora_B.", ".lora_A.")].to(device=device, dtype=torch_dtype) | |
| if len(weight_up.shape) == 4: | |
| weight_up = weight_up.squeeze(3).squeeze(2) | |
| weight_down = weight_down.squeeze(3).squeeze(2) | |
| lora_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3) | |
| else: | |
| lora_weight = alpha * torch.mm(weight_up, weight_down) | |
| keys = key.split(".") | |
| keys.pop(keys.index("lora_B")) | |
| target_name = ".".join(keys) | |
| target_name = target_name[len(lora_prefix):] | |
| state_dict_[target_name] = lora_weight.cpu() | |
| return state_dict_ | |
| def load(self, model, state_dict_lora, lora_prefix, alpha=1.0, model_resource=None): | |
| state_dict_model = model.state_dict() | |
| state_dict_lora = self.convert_state_dict(state_dict_lora, lora_prefix=lora_prefix, alpha=alpha) | |
| if model_resource == "diffusers": | |
| state_dict_lora = model.__class__.state_dict_converter().from_diffusers(state_dict_lora) | |
| elif model_resource == "civitai": | |
| state_dict_lora = model.__class__.state_dict_converter().from_civitai(state_dict_lora) | |
| if isinstance(state_dict_lora, tuple): | |
| state_dict_lora = state_dict_lora[0] | |
| if len(state_dict_lora) > 0: | |
| print(f" {len(state_dict_lora)} tensors are updated.") | |
| for name in state_dict_lora: | |
| fp8=False | |
| if state_dict_model[name].dtype == torch.float8_e4m3fn: | |
| state_dict_model[name]= state_dict_model[name].to(state_dict_lora[name].dtype) | |
| fp8=True | |
| state_dict_model[name] += state_dict_lora[name].to( | |
| dtype=state_dict_model[name].dtype, device=state_dict_model[name].device) | |
| if fp8: | |
| state_dict_model[name] = state_dict_model[name].to(torch.float8_e4m3fn) | |
| model.load_state_dict(state_dict_model) | |
| def match(self, model, state_dict_lora): | |
| for lora_prefix, model_class in zip(self.lora_prefix, self.supported_model_classes): | |
| if not isinstance(model, model_class): | |
| continue | |
| state_dict_model = model.state_dict() | |
| for model_resource in ["diffusers", "civitai"]: | |
| try: | |
| state_dict_lora_ = self.convert_state_dict(state_dict_lora, lora_prefix=lora_prefix, alpha=1.0) | |
| converter_fn = model.__class__.state_dict_converter().from_diffusers if model_resource == "diffusers" \ | |
| else model.__class__.state_dict_converter().from_civitai | |
| state_dict_lora_ = converter_fn(state_dict_lora_) | |
| if isinstance(state_dict_lora_, tuple): | |
| state_dict_lora_ = state_dict_lora_[0] | |
| if len(state_dict_lora_) == 0: | |
| continue | |
| for name in state_dict_lora_: | |
| if name not in state_dict_model: | |
| break | |
| else: | |
| return lora_prefix, model_resource | |
| except: | |
| pass | |
| return None | |
| class GeneralLoRAFromPeft: | |
| def __init__(self): | |
| self.supported_model_classes = [ WanModel] | |
| def get_name_dict(self, lora_state_dict): | |
| lora_name_dict = {} | |
| for key in lora_state_dict: | |
| if ".lora_B." not in key: | |
| continue | |
| keys = key.split(".") | |
| if len(keys) > keys.index("lora_B") + 2: | |
| keys.pop(keys.index("lora_B") + 1) | |
| keys.pop(keys.index("lora_B")) | |
| if keys[0] == "diffusion_model": | |
| keys.pop(0) | |
| target_name = ".".join(keys) | |
| lora_name_dict[target_name] = (key, key.replace(".lora_B.", ".lora_A.")) | |
| return lora_name_dict | |
| def match(self, model: torch.nn.Module, state_dict_lora): | |
| lora_name_dict = self.get_name_dict(state_dict_lora) | |
| model_name_dict = {name: None for name, _ in model.named_parameters()} | |
| matched_num = sum([i in model_name_dict for i in lora_name_dict]) | |
| if matched_num == len(lora_name_dict): | |
| return "", "" | |
| else: | |
| return None | |
| def fetch_device_and_dtype(self, state_dict): | |
| device, dtype = None, None | |
| for name, param in state_dict.items(): | |
| device, dtype = param.device, param.dtype | |
| break | |
| computation_device = device | |
| computation_dtype = dtype | |
| if computation_device == torch.device("cpu"): | |
| if torch.cuda.is_available(): | |
| computation_device = torch.device("cuda") | |
| if computation_dtype == torch.float8_e4m3fn: | |
| computation_dtype = torch.float32 | |
| return device, dtype, computation_device, computation_dtype | |
| def load(self, model, state_dict_lora, lora_prefix="", alpha=1.0, model_resource=""): | |
| state_dict_model = model.state_dict() | |
| device, dtype, computation_device, computation_dtype = self.fetch_device_and_dtype(state_dict_model) | |
| lora_name_dict = self.get_name_dict(state_dict_lora) | |
| for name in lora_name_dict: | |
| weight_up = state_dict_lora[lora_name_dict[name][0]].to(device=computation_device, dtype=computation_dtype) | |
| weight_down = state_dict_lora[lora_name_dict[name][1]].to(device=computation_device, dtype=computation_dtype) | |
| if len(weight_up.shape) == 4: | |
| weight_up = weight_up.squeeze(3).squeeze(2) | |
| weight_down = weight_down.squeeze(3).squeeze(2) | |
| weight_lora = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3) | |
| else: | |
| weight_lora = alpha * torch.mm(weight_up, weight_down) | |
| weight_model = state_dict_model[name].to(device=computation_device, dtype=computation_dtype) | |
| weight_patched = weight_model + weight_lora | |
| state_dict_model[name] = weight_patched.to(device=device, dtype=dtype) | |
| print(f" {len(lora_name_dict)} tensors are updated.") | |
| model.load_state_dict(state_dict_model) | |
| class WanLoRAConverter: | |
| def __init__(self): | |
| pass | |
| def align_to_opensource_format(state_dict, **kwargs): | |
| state_dict = {"diffusion_model." + name.replace(".default.", "."): param for name, param in state_dict.items()} | |
| return state_dict | |
| def align_to_dkt_format(state_dict, **kwargs): | |
| state_dict = {name.replace("diffusion_model.", "").replace(".lora_A.weight", ".lora_A.default.weight").replace(".lora_B.weight", ".lora_B.default.weight"): param for name, param in state_dict.items()} | |
| return state_dict | |
| def get_lora_loaders(): | |
| return [GeneralLoRAFromPeft()] | |