DKT / dkt /models /lora.py
shaocong's picture
Initial commit
cf7f9c0
import torch
from .wan_video_dit import WanModel
class LoRAFromCivitai:
def __init__(self):
self.supported_model_classes = []
self.lora_prefix = []
self.renamed_lora_prefix = {}
self.special_keys = {}
def convert_state_dict(self, state_dict, lora_prefix="lora_unet_", alpha=1.0):
for key in state_dict:
if ".lora_up" in key:
return self.convert_state_dict_up_down(state_dict, lora_prefix, alpha)
return self.convert_state_dict_AB(state_dict, lora_prefix, alpha)
def convert_state_dict_up_down(self, state_dict, lora_prefix="lora_unet_", alpha=1.0):
renamed_lora_prefix = self.renamed_lora_prefix.get(lora_prefix, "")
state_dict_ = {}
for key in state_dict:
if ".lora_up" not in key:
continue
if not key.startswith(lora_prefix):
continue
weight_up = state_dict[key].to(device="cuda", dtype=torch.float16)
weight_down = state_dict[key.replace(".lora_up", ".lora_down")].to(device="cuda", dtype=torch.float16)
if len(weight_up.shape) == 4:
weight_up = weight_up.squeeze(3).squeeze(2).to(torch.float32)
weight_down = weight_down.squeeze(3).squeeze(2).to(torch.float32)
lora_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
else:
lora_weight = alpha * torch.mm(weight_up, weight_down)
target_name = key.split(".")[0].replace(lora_prefix, renamed_lora_prefix).replace("_", ".") + ".weight"
for special_key in self.special_keys:
target_name = target_name.replace(special_key, self.special_keys[special_key])
state_dict_[target_name] = lora_weight.cpu()
return state_dict_
def convert_state_dict_AB(self, state_dict, lora_prefix="", alpha=1.0, device="cuda", torch_dtype=torch.float16):
state_dict_ = {}
for key in state_dict:
if ".lora_B." not in key:
continue
if not key.startswith(lora_prefix):
continue
weight_up = state_dict[key].to(device=device, dtype=torch_dtype)
weight_down = state_dict[key.replace(".lora_B.", ".lora_A.")].to(device=device, dtype=torch_dtype)
if len(weight_up.shape) == 4:
weight_up = weight_up.squeeze(3).squeeze(2)
weight_down = weight_down.squeeze(3).squeeze(2)
lora_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
else:
lora_weight = alpha * torch.mm(weight_up, weight_down)
keys = key.split(".")
keys.pop(keys.index("lora_B"))
target_name = ".".join(keys)
target_name = target_name[len(lora_prefix):]
state_dict_[target_name] = lora_weight.cpu()
return state_dict_
def load(self, model, state_dict_lora, lora_prefix, alpha=1.0, model_resource=None):
state_dict_model = model.state_dict()
state_dict_lora = self.convert_state_dict(state_dict_lora, lora_prefix=lora_prefix, alpha=alpha)
if model_resource == "diffusers":
state_dict_lora = model.__class__.state_dict_converter().from_diffusers(state_dict_lora)
elif model_resource == "civitai":
state_dict_lora = model.__class__.state_dict_converter().from_civitai(state_dict_lora)
if isinstance(state_dict_lora, tuple):
state_dict_lora = state_dict_lora[0]
if len(state_dict_lora) > 0:
print(f" {len(state_dict_lora)} tensors are updated.")
for name in state_dict_lora:
fp8=False
if state_dict_model[name].dtype == torch.float8_e4m3fn:
state_dict_model[name]= state_dict_model[name].to(state_dict_lora[name].dtype)
fp8=True
state_dict_model[name] += state_dict_lora[name].to(
dtype=state_dict_model[name].dtype, device=state_dict_model[name].device)
if fp8:
state_dict_model[name] = state_dict_model[name].to(torch.float8_e4m3fn)
model.load_state_dict(state_dict_model)
def match(self, model, state_dict_lora):
for lora_prefix, model_class in zip(self.lora_prefix, self.supported_model_classes):
if not isinstance(model, model_class):
continue
state_dict_model = model.state_dict()
for model_resource in ["diffusers", "civitai"]:
try:
state_dict_lora_ = self.convert_state_dict(state_dict_lora, lora_prefix=lora_prefix, alpha=1.0)
converter_fn = model.__class__.state_dict_converter().from_diffusers if model_resource == "diffusers" \
else model.__class__.state_dict_converter().from_civitai
state_dict_lora_ = converter_fn(state_dict_lora_)
if isinstance(state_dict_lora_, tuple):
state_dict_lora_ = state_dict_lora_[0]
if len(state_dict_lora_) == 0:
continue
for name in state_dict_lora_:
if name not in state_dict_model:
break
else:
return lora_prefix, model_resource
except:
pass
return None
class GeneralLoRAFromPeft:
def __init__(self):
self.supported_model_classes = [ WanModel]
def get_name_dict(self, lora_state_dict):
lora_name_dict = {}
for key in lora_state_dict:
if ".lora_B." not in key:
continue
keys = key.split(".")
if len(keys) > keys.index("lora_B") + 2:
keys.pop(keys.index("lora_B") + 1)
keys.pop(keys.index("lora_B"))
if keys[0] == "diffusion_model":
keys.pop(0)
target_name = ".".join(keys)
lora_name_dict[target_name] = (key, key.replace(".lora_B.", ".lora_A."))
return lora_name_dict
def match(self, model: torch.nn.Module, state_dict_lora):
lora_name_dict = self.get_name_dict(state_dict_lora)
model_name_dict = {name: None for name, _ in model.named_parameters()}
matched_num = sum([i in model_name_dict for i in lora_name_dict])
if matched_num == len(lora_name_dict):
return "", ""
else:
return None
def fetch_device_and_dtype(self, state_dict):
device, dtype = None, None
for name, param in state_dict.items():
device, dtype = param.device, param.dtype
break
computation_device = device
computation_dtype = dtype
if computation_device == torch.device("cpu"):
if torch.cuda.is_available():
computation_device = torch.device("cuda")
if computation_dtype == torch.float8_e4m3fn:
computation_dtype = torch.float32
return device, dtype, computation_device, computation_dtype
def load(self, model, state_dict_lora, lora_prefix="", alpha=1.0, model_resource=""):
state_dict_model = model.state_dict()
device, dtype, computation_device, computation_dtype = self.fetch_device_and_dtype(state_dict_model)
lora_name_dict = self.get_name_dict(state_dict_lora)
for name in lora_name_dict:
weight_up = state_dict_lora[lora_name_dict[name][0]].to(device=computation_device, dtype=computation_dtype)
weight_down = state_dict_lora[lora_name_dict[name][1]].to(device=computation_device, dtype=computation_dtype)
if len(weight_up.shape) == 4:
weight_up = weight_up.squeeze(3).squeeze(2)
weight_down = weight_down.squeeze(3).squeeze(2)
weight_lora = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
else:
weight_lora = alpha * torch.mm(weight_up, weight_down)
weight_model = state_dict_model[name].to(device=computation_device, dtype=computation_dtype)
weight_patched = weight_model + weight_lora
state_dict_model[name] = weight_patched.to(device=device, dtype=dtype)
print(f" {len(lora_name_dict)} tensors are updated.")
model.load_state_dict(state_dict_model)
class WanLoRAConverter:
def __init__(self):
pass
@staticmethod
def align_to_opensource_format(state_dict, **kwargs):
state_dict = {"diffusion_model." + name.replace(".default.", "."): param for name, param in state_dict.items()}
return state_dict
@staticmethod
def align_to_dkt_format(state_dict, **kwargs):
state_dict = {name.replace("diffusion_model.", "").replace(".lora_A.weight", ".lora_A.default.weight").replace(".lora_B.weight", ".lora_B.default.weight"): param for name, param in state_dict.items()}
return state_dict
def get_lora_loaders():
return [GeneralLoRAFromPeft()]