Spaces:
Runtime error
Risk Models Specification
This document outlines the requirements and specifications for implementing risk models in the Sentinel cancer risk assessment system.
Overview
Risk models in Sentinel are designed to calculate cancer risk scores using structured user input data. All risk models must follow a consistent architecture, use the new UserInput structure, implement proper validation, and maintain comprehensive test coverage.
Core Architecture
Base Class
All risk models must inherit from RiskModel in src/sentinel/risk_models/base.py:
from sentinel.risk_models.base import RiskModel
class YourRiskModel(RiskModel):
def __init__(self):
super().__init__("your_model_name")
Required Methods
Every risk model must implement these abstract methods:
def compute_score(self, user: UserInput) -> str:
"""Compute the risk score for a given user profile.
Args:
user: The user profile containing demographics, medical history, etc.
Returns:
str: Risk percentage as a string or an N/A message if inapplicable.
Raises:
ValueError: If required inputs are missing or invalid.
"""
def cancer_type(self) -> str:
"""Return the cancer type this model assesses."""
return "breast" # or "lung", "prostate", etc.
def description(self) -> str:
"""Return a detailed description of the model."""
def interpretation(self) -> str:
"""Return guidance on how to interpret the results."""
def references(self) -> list[str]:
"""Return list of reference citations."""
UserInput Structure
Required Imports
from typing import Annotated
from pydantic import Field
from sentinel.risk_models.base import RiskModel
from sentinel.user_input import (
# Import specific enums and models you need
CancerType,
ChronicCondition,
Demographics,
Ethnicity,
FamilyMemberCancer,
FamilyRelation,
FamilySide,
RelationshipDegree,
Sex,
SymptomEntry,
UserInput,
# ... other specific imports
)
UserInput Hierarchy
The UserInput class follows a hierarchical structure:
UserInput
βββ demographics: Demographics
β βββ age_years: int
β βββ sex: Sex (enum)
β βββ ethnicity: Ethnicity | None
β βββ anthropometrics: Anthropometrics
β βββ height_cm: float | None
β βββ weight_kg: float | None
βββ lifestyle: Lifestyle
β βββ smoking: SmokingHistory
β βββ alcohol: AlcoholConsumption
βββ personal_medical_history: PersonalMedicalHistory
β βββ chronic_conditions: list[ChronicCondition]
β βββ previous_cancers: list[CancerType]
β βββ genetic_mutations: list[GeneticMutation]
β βββ tyrer_cuzick_polygenic_risk_score: float | None
β βββ # ... other fields
βββ female_specific: FemaleSpecific | None
β βββ menstrual: MenstrualHistory
β βββ parity: ParityHistory
β βββ breast_health: BreastHealthHistory
βββ symptoms: list[SymptomEntry]
βββ family_history: list[FamilyMemberCancer]
REQUIRED_INPUTS Specification
Structure
Every risk model must define a REQUIRED_INPUTS class attribute using Pydantic's Annotated types with Field constraints:
REQUIRED_INPUTS: dict[str, tuple[type, bool]] = {
"demographics.age_years": (Annotated[int, Field(ge=18, le=100)], True),
"demographics.sex": (Sex, True),
"demographics.ethnicity": (Ethnicity | None, False),
"demographics.anthropometrics.height_cm": (Annotated[float, Field(gt=0)], False),
"demographics.anthropometrics.weight_kg": (Annotated[float, Field(gt=0)], False),
"female_specific.menstrual.age_at_menarche": (Annotated[int, Field(ge=8, le=25)], False),
"personal_medical_history.tyrer_cuzick_polygenic_risk_score": (Annotated[float, Field(gt=0)], False),
"family_history": (list, False), # list[FamilyMemberCancer]
"symptoms": (list, False), # list[SymptomEntry]
}
Field Constraints
Use appropriate Field constraints for validation:
ge=X: Greater than or equal to Xle=X: Less than or equal to Xgt=X: Greater than Xlt=X: Less than X
Required vs Optional
True: Field is required for the modelFalse: Field is optional but validated if present
Input Validation
Validation in compute_score
Every compute_score method must start with input validation:
def compute_score(self, user: UserInput) -> str:
"""Compute the risk score for a given user profile."""
# Validate inputs first
is_valid, errors = self.validate_inputs(user)
if not is_valid:
raise ValueError(f"Invalid inputs for {self.name}: {'; '.join(errors)}")
# Continue with model-specific logic...
Model-Specific Validation
Add additional validation as needed:
# Check sex applicability
if user.demographics.sex != Sex.FEMALE:
return "N/A: Model is only applicable to female patients."
# Check age range
if not (35 <= user.demographics.age_years <= 85):
return "N/A: Age is outside the validated range."
# Check required data availability
if user.female_specific is None:
return "N/A: Missing female-specific information required for model."
Extending UserInput
When to Extend
If a risk model requires fields or enums that don't exist in UserInput, do not use replacement values or hacks. Instead, propose extending UserInput:
- Missing Enums: Add new values to existing enums (e.g.,
ChronicCondition,SymptomType) - Missing Fields: Add new fields to appropriate sections (e.g.,
PersonalMedicalHistory,BreastHealthHistory) - Missing Models: Create new Pydantic models if needed
Extension Process
- Identify Missing Elements: Document what's needed for the model
- Propose Extension: Suggest specific additions to
UserInput - Implement Extension: Add the new fields/enums to
src/sentinel/user_input.py - Update Tests: Add tests for new fields in
tests/test_user_input.py - Update Model: Use the new fields in your risk model
- Run Tests: Ensure all tests pass
Example Extensions
# Adding new ChronicCondition enum values
class ChronicCondition(str, Enum):
# ... existing values
ENDOMETRIAL_POLYPS = "endometrial_polyps"
ANAEMIA = "anaemia"
# Adding new fields to PersonalMedicalHistory
class PersonalMedicalHistory(StrictBaseModel):
# ... existing fields
tyrer_cuzick_polygenic_risk_score: float | None = Field(
None,
gt=0,
description="Tyrer-Cuzick polygenic risk score as relative risk multiplier",
)
# Adding new fields to BreastHealthHistory
class BreastHealthHistory(StrictBaseModel):
# ... existing fields
lobular_carcinoma_in_situ: bool | None = Field(
None,
description="History of lobular carcinoma in situ (LCIS) diagnosis",
)
Data Access Patterns
Demographics
age = user.demographics.age_years
sex = user.demographics.sex
ethnicity = user.demographics.ethnicity
height_cm = user.demographics.anthropometrics.height_cm
weight_kg = user.demographics.anthropometrics.weight_kg
Female-Specific Data
if user.female_specific is not None:
fs = user.female_specific
menarche_age = fs.menstrual.age_at_menarche
menopause_age = fs.menstrual.age_at_menopause
num_births = fs.parity.num_live_births
first_birth_age = fs.parity.age_at_first_live_birth
num_biopsies = fs.breast_health.num_biopsies
atypical_hyperplasia = fs.breast_health.atypical_hyperplasia
lcis = fs.breast_health.lobular_carcinoma_in_situ
Medical History
chronic_conditions = user.personal_medical_history.chronic_conditions
previous_cancers = user.personal_medical_history.previous_cancers
genetic_mutations = user.personal_medical_history.genetic_mutations
polygenic_score = user.personal_medical_history.tyrer_cuzick_polygenic_risk_score
Family History
for member in user.family_history:
if member.cancer_type == CancerType.BREAST:
relation = member.relation
age_at_diagnosis = member.age_at_diagnosis
degree = member.degree
side = member.side
Symptoms
for symptom in user.symptoms:
symptom_type = symptom.symptom_type
severity = symptom.severity
duration_days = symptom.duration_days
Enum Usage
Always Use Enums
Never use string literals. Always use the appropriate enums:
# β
Correct
if user.demographics.sex == Sex.FEMALE:
if member.cancer_type == CancerType.BREAST:
if member.relation == FamilyRelation.MOTHER:
if member.degree == RelationshipDegree.FIRST:
if member.side == FamilySide.MATERNAL:
# β Incorrect
if user.demographics.sex == "female":
if member.cancer_type == "breast":
if member.relation == "mother":
Enum Mapping
When you need to map enums to model-specific codes:
def _race_code_from_ethnicity(ethnicity: Ethnicity | None) -> int:
"""Map ethnicity enum to model-specific race code."""
if not ethnicity:
return 1 # Default
if ethnicity == Ethnicity.BLACK:
return 2
if ethnicity in {Ethnicity.ASIAN, Ethnicity.PACIFIC_ISLANDER}:
return 3
if ethnicity == Ethnicity.HISPANIC:
return 6
return 1 # Default to White
Testing Requirements
Test File Structure
Create comprehensive test files following this pattern:
import pytest
from sentinel.user_input import (
# Import all needed models and enums
Anthropometrics,
BreastHealthHistory,
CancerType,
Demographics,
Ethnicity,
FamilyMemberCancer,
FamilyRelation,
FamilySide,
FemaleSpecific,
Lifestyle,
MenstrualHistory,
ParityHistory,
PersonalMedicalHistory,
RelationshipDegree,
Sex,
SmokingHistory,
SmokingStatus,
UserInput,
)
from sentinel.risk_models import YourRiskModel
# Ground truth test cases
GROUND_TRUTH_CASES = [
{
"name": "test_case_name",
"input": UserInput(
demographics=Demographics(
age_years=40,
sex=Sex.FEMALE,
ethnicity=Ethnicity.WHITE,
anthropometrics=Anthropometrics(height_cm=165.0, weight_kg=65.0),
),
lifestyle=Lifestyle(
smoking=SmokingHistory(status=SmokingStatus.NEVER),
),
personal_medical_history=PersonalMedicalHistory(),
female_specific=FemaleSpecific(
menstrual=MenstrualHistory(age_at_menarche=13),
parity=ParityHistory(num_live_births=1, age_at_first_live_birth=25),
breast_health=BreastHealthHistory(),
),
family_history=[
FamilyMemberCancer(
relation=FamilyRelation.MOTHER,
cancer_type=CancerType.BREAST,
age_at_diagnosis=55,
degree=RelationshipDegree.FIRST,
side=FamilySide.MATERNAL,
)
],
),
"expected": 1.5, # Expected risk percentage
},
# ... more test cases
]
class TestYourRiskModel:
"""Test suite for YourRiskModel."""
def setup_method(self):
"""Initialize model instance for testing."""
self.model = YourRiskModel()
@pytest.mark.parametrize("case", GROUND_TRUTH_CASES, ids=lambda x: x["name"])
def test_ground_truth_validation(self, case):
"""Test against ground truth results."""
user_input = case["input"]
expected_risk = case["expected"]
actual_risk_str = self.model.compute_score(user_input)
if "N/A" in actual_risk_str:
pytest.fail(f"Model returned N/A: {actual_risk_str}")
actual_risk = float(actual_risk_str)
assert actual_risk == pytest.approx(expected_risk, abs=0.01)
def test_validation_errors(self):
"""Test that model raises ValueError for invalid inputs."""
# Test invalid age
user_input = UserInput(
demographics=Demographics(
age_years=30, # Below minimum
sex=Sex.FEMALE,
anthropometrics=Anthropometrics(height_cm=165.0, weight_kg=65.0),
),
# ... rest of input
)
with pytest.raises(ValueError, match=r"Invalid inputs for.*:"):
self.model.compute_score(user_input)
def test_inapplicable_cases(self):
"""Test cases where model returns N/A."""
# Test male patient
user_input = UserInput(
demographics=Demographics(
age_years=50,
sex=Sex.MALE, # Wrong sex
anthropometrics=Anthropometrics(height_cm=175.0, weight_kg=70.0),
),
# ... rest of input
)
score = self.model.compute_score(user_input)
assert "N/A" in score
Test Coverage Requirements
- Ground Truth Validation: Test against known reference values
- Input Validation: Test that invalid inputs raise
ValueError - Edge Cases: Test boundary conditions and edge cases
- Inapplicable Cases: Test cases where model should return "N/A"
- Enum Usage: Test that all enums are used correctly
- Family History: Test various family relationship combinations
- Error Handling: Test error conditions and exception handling
Code Quality Requirements
Pre-commit Hooks
All code must pass these pre-commit hooks:
- unimport: Remove unused imports
- ruff format: Code formatting
- ruff check: Linting and style checks
- pylint: Code quality analysis
- darglint: Docstring validation
- pydocstyle: Docstring style checks
- codespell: Spell checking
Code Style
- Use type hints throughout
- Write clear, concise docstrings
- Follow PEP 8 style guidelines
- Use meaningful variable names
- Add comments for complex logic
- Handle edge cases gracefully
Error Handling
def compute_score(self, user: UserInput) -> str:
"""Compute the risk score for a given user profile."""
try:
# Validate inputs
is_valid, errors = self.validate_inputs(user)
if not is_valid:
raise ValueError(f"Invalid inputs for {self.name}: {'; '.join(errors)}")
# Model-specific validation
if user.demographics.sex != Sex.FEMALE:
return "N/A: Model is only applicable to female patients."
# Calculate risk
risk = self._calculate_risk(user)
return f"{risk:.2f}"
except Exception as e:
return f"N/A: Error calculating risk - {e!s}"
Migration Checklist
When adapting an existing risk model to the new structure:
- Update imports to use new
user_inputmodule - Add
REQUIRED_INPUTSwith Pydantic validation - Refactor
compute_scoreto use newUserInputstructure - Replace string literals with enums
- Update parameter extraction logic
- Add input validation at start of
compute_score - Update all test cases to use new
UserInputstructure - Run full test suite to ensure 100% pass rate
- Run pre-commit hooks to ensure code quality
- Document any
UserInputextensions needed - Update model documentation and references
Examples
Complete Risk Model Template
"""Your cancer risk model implementation."""
from typing import Annotated
from pydantic import Field
from sentinel.risk_models.base import RiskModel
from sentinel.user_input import (
CancerType,
Demographics,
Ethnicity,
FamilyMemberCancer,
FamilyRelation,
RelationshipDegree,
Sex,
UserInput,
)
class YourRiskModel(RiskModel):
"""Compute cancer risk using the Your model."""
def __init__(self):
super().__init__("your_model")
REQUIRED_INPUTS: dict[str, tuple[type, bool]] = {
"demographics.age_years": (Annotated[int, Field(ge=18, le=100)], True),
"demographics.sex": (Sex, True),
"demographics.ethnicity": (Ethnicity | None, False),
"family_history": (list, False), # list[FamilyMemberCancer]
}
def compute_score(self, user: UserInput) -> str:
"""Compute the risk score for a given user profile."""
# Validate inputs first
is_valid, errors = self.validate_inputs(user)
if not is_valid:
raise ValueError(f"Invalid inputs for Your: {'; '.join(errors)}")
# Model-specific validation
if user.demographics.sex != Sex.FEMALE:
return "N/A: Model is only applicable to female patients."
# Extract parameters
age = user.demographics.age_years
ethnicity = user.demographics.ethnicity
# Count family history
family_count = sum(
1 for member in user.family_history
if member.cancer_type == CancerType.BREAST
and member.degree == RelationshipDegree.FIRST
)
# Calculate risk (example)
risk = self._calculate_risk(age, family_count, ethnicity)
return f"{risk:.2f}"
def _calculate_risk(self, age: int, family_count: int, ethnicity: Ethnicity | None) -> float:
"""Calculate the actual risk value."""
# Implementation here
return 1.5 # Example
def cancer_type(self) -> str:
return "breast"
def description(self) -> str:
return "Your model description here."
def interpretation(self) -> str:
return "Interpretation guidance here."
def references(self) -> list[str]:
return ["Your reference here."]
This specification ensures consistency, maintainability, and quality across all risk models in the Sentinel system.