Medical_Chatbot / app.py
LaurenGurgiolo's picture
Update app.py
457f283 verified
# Import libraries
import gradio as gr
from transformers import pipeline
from huggingface_hub import InferenceClient
from huggingface_hub import InferenceApi
import numpy
import huggingface_hub
import torch # assuming you're using PyTorch
import json
import pandas as pd
import sentencepiece
import accelerate
import safetensors
from transformers import T5Tokenizer, T5ForConditionalGeneration
# Set the model
tokenizer = T5Tokenizer.from_pretrained('Tianlin668/MentalT5')
model = T5ForConditionalGeneration.from_pretrained('Tianlin668/MentalT5')
# Generate text
def infer(prompt):
input = f"<|startoftext|> {prompt.strip()}"
input = tokenizer(input, return_tensors="pt").to(model.device)
input_ids = input["input_ids"]
attention_mask = input["attention_mask"]
output = model.generate(input_ids,
attention_mask=attention_mask,
max_new_tokens=100,
do_sample = True, top_k = 50, top_p = 0.85)
output = tokenizer.decode(output[0], skip_special_tokens=True)
return output
# Set interface
iface = gr.Interface(fn=infer, inputs=[gr.Textbox(label="Ask the Mental Doc Bot anything")], outputs="textbox")
if __name__ == "__main__":
iface.launch()