Mgolo's picture
Update app.py
774c080 verified
raw
history blame
6.29 kB
import gradio as gr
from transformers import pipeline, MarianTokenizer, AutoModelForSeq2SeqLM
import torch
import unicodedata
import re
import whisper
import tempfile
import os
import nltk
nltk.download('punkt')
from nltk.tokenize import sent_tokenize
# Additions for file processing
import fitz # PyMuPDF for PDF
import docx
from bs4 import BeautifulSoup
import markdown2
import chardet
# --- Device selection ---
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# --- Load translation models ---
def load_models():
en_dar_model_path = "/LocaleNLP/English_Hausa"
en_wol_model_path = "/LocaleNLP/eng_wolof"
en_hau_model_path = "/LocaleNLP/English_Darija"
en_dar_model = AutoModelForSeq2SeqLM.from_pretrained(en_dar_model_path).to(device)
en_dar_tokenizer = MarianTokenizer.from_pretrained(en_dar_model_path)
en_wol_model = AutoModelForSeq2SeqLM.from_pretrained(en_wol_model_path).to(device)
en_wol_tokenizer = MarianTokenizer.from_pretrained(en_wol_model_path)
en_hau_model = AutoModelForSeq2SeqLM.from_pretrained(en_hau_model_path).to(device)
en_hau_tokenizer = MarianTokenizer.from_pretrained(en_hau_model_path)
en_dar_translator = pipeline("translation", model=en_dar_model, tokenizer=en_dar_tokenizer, device=0 if device.type == 'cuda' else -1)
en_wol_translator = pipeline("translation", model=en_wol_model, tokenizer=en_wol_tokenizer, device=0 if device.type == 'cuda' else -1)
en_hau_translator = pipeline("translation", model=en_hau_model, tokenizer=en_hau_tokenizer, device=0 if device.type == 'cuda' else -1)
return en_dar_translator, en_hau_translator, en_wol_translator
def load_whisper_model():
return whisper.load_model("base")
def transcribe_audio(audio_path):
whisper_model = load_whisper_model()
return whisper_model.transcribe(audio_path)["text"]
def translate(text, target_lang):
en_dar_translator, en_hau_translator, en_wol_translator = load_models()
if target_lang == "Darija (Morocco)":
translator = en_dar_translator
elif target_lang == "Hausa (Nigeria)":
translator = en_hau_translator
elif target_lang == "Wolof (Senegal)":
translator = en_wol_translator
else:
raise ValueError("Unsupported target language")
lang_tag = {
"Darija (Morocco)": ">>dar<<",
"Hausa (Nigeria)": ">>hau<<",
"Wolof (Senegal)": ">>wol<<"
}[target_lang]
paragraphs = text.split("\n")
translated_output = []
with torch.no_grad():
for para in paragraphs:
if not para.strip():
translated_output.append("")
continue
sentences = [s.strip() for s in para.split('. ') if s.strip()]
formatted = [f"{lang_tag} {s}" for s in sentences]
results = translator(formatted,
max_length=5000,
num_beams=5,
early_stopping=True,
no_repeat_ngram_size=3,
repetition_penalty=1.5,
length_penalty=1.2)
translated_sentences = [r['translation_text'].capitalize() for r in results]
translated_output.append('. '.join(translated_sentences))
return "\n".join(translated_output)
# --- Extract text from file ---
def extract_text_from_file(uploaded_file):
file_type = uploaded_file.name.split('.')[-1].lower()
content = uploaded_file.read()
if file_type == "pdf":
with fitz.open(stream=content, filetype="pdf") as doc:
return "\n".join([page.get_text() for page in doc])
elif file_type == "docx":
doc = docx.Document(uploaded_file)
return "\n".join([para.text for para in doc.paragraphs])
else:
encoding = chardet.detect(content)['encoding']
if encoding:
content = content.decode(encoding, errors='ignore')
if file_type in ("html", "htm"):
soup = BeautifulSoup(content, "html.parser")
return soup.get_text()
elif file_type == "md":
html = markdown2.markdown(content)
soup = BeautifulSoup(html, "html.parser")
return soup.get_text()
elif file_type == "srt":
return re.sub(r"\d+\n\d{2}:\d{2}:\d{2},\d{3} --> .*?\n", "", content)
elif file_type in ("txt", "text"):
return content
else:
raise ValueError("Unsupported file type")
# --- Main Gradio Function ---
def process(input_mode, target_lang, text_input, audio_input, file_input):
input_text = ""
if input_mode == "Text" and text_input:
input_text = text_input
elif input_mode == "Audio" and audio_input:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
tmp.write(audio_input.read())
tmp_path = tmp.name
input_text = transcribe_audio(audio_input)
os.remove(tmp_path)
elif input_mode == "File" and file_input:
input_text = extract_text_from_file(file_input)
if not input_text.strip():
return "", "No input text provided."
translated_text = translate(input_text, target_lang)
return input_text, translated_text
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("## 🌐 LocaleNLP Translator β€” English ↔ Darija / Hausa / Wolof")
with gr.Row():
input_mode = gr.Dropdown(["Text", "Audio", "File"], label="Select input mode")
target_lang = gr.Dropdown(["Darija (Morocco)", "Hausa (Nigeria)", "Wolof (Senegal)"], label="Select target language")
with gr.Row():
text_input = gr.Textbox(label="Enter English text", lines=10)
audio_input = gr.Audio(type="filepath", label="Upload Audio")
file_input = gr.File(label="Upload Document")
with gr.Row():
extracted_text = gr.Textbox(label="Extracted / Transcribed Text", lines=10)
translated_output = gr.Textbox(label="Translated Text", lines=10)
run_btn = gr.Button("Translate")
run_btn.click(process, inputs=[input_mode, target_lang, text_input, audio_input, file_input], outputs=[extracted_text, translated_output])
if __name__ == "__main__":
demo.launch()